Harvesting stem cells from amniotic fluid

December 4, 2017, Lund University

Amniotic fluid, the protective liquid surrounding an unborn baby, is discarded as medical waste during caesarean section deliveries. However, there is increasing evidence that this fluid is a source of valuable biological material, including stem cells with the potential for use in cell therapy and regenerative medicine. A team of scientists and clinicians at Lund University in Sweden have now developed a multi-step method, including a unique collection device and new cell harvesting and processing techniques, that enables term amniotic fluid to be safely harvested for large quantities of cells.

The new method is used in combination with full-term deliveries, and with millions of caesarean sections performed worldwide each year, it opens the potential for an unexploited reserve of and valuable bioactive molecules in the surrounding the baby to be utilized.

"We showed that using our device, we can collect up to a litre of at full-term caesarean deliveries. The collection added on average 90 seconds to the operation, and was safe for both mother and child," says Associate Professor Andreas Herbst, lead clinician and a corresponding author of the study.

The collection device, which has been constructed with bio-inert plastics and 3-D-printing techniques, forms a seal with the fetal cavity, enabling gentle and sterile collection of large volumes of amniotic fluid, while being completely safe for mother and baby. The collected fluid contains specialized with high therapeutic potential. The cell type that the current protocol purifies is called a Mesenchymal Stem Cell (MSC).

MSCs can obtained from other tissues in the body, and have already demonstrated therapeutic potential for immune and inflammatory-mediated diseases, for example, cardiovascular disease, diabetes, arthritis, and neurodegenerative disorders. However, the difficulty in acquiring sufficient numbers of these cells limits their broad use in cell therapy and tissue repair applications. "Full term amniotic fluid, being an easily obtainable and abundant tissue source, may be the solution for MSC based cell therapy and regenerative medicine applications", says Associate Professor Niels-Bjarne Woods, a corresponding author in the study.

Credit: Lund University

Since the collections involve planned Caesarean sections, no additional invasive medical procedures are needed for the MSC isolation, in contrast to MSC isolation from bone marrow.

The research group has also shown another potential use for MSCs purified from full-term amniotic fluid. By converting these cells to an embryonic-like stem cell state, they can potentially give rise to all different cell types of the body, including neural cells, blood cells and heart cells, among others.

"The combination of this novel device and the coupled cellular selection and cultivation methods could be transformative for the stem cell field, as large quantities of newborn-MSC's can be provided by utilizing this waste material. The safety standards we adhere to are also a central component for gaining clinical acceptance. The obvious next step would be to evaluate these cells further in the laboratory and, if successful, in disease models", says Dr Marcus Larsson, clinician and a corresponding author on the publication.

The long-term goal is that amniotic fluid collection will be adopted in clinics worldwide, and by doing so, the numbers of suitably matched MSCs obtained would rapidly increase to finally be sufficient to treat any genetically matched person in need of individualized MSC based therapy.

"Now that we have demonstrated the feasibility to access this neonatal MSC source, our hope is that many more research groups will start working with these cells. This will accelerate our understanding of their full therapeutic potential", says Dr. Niels-Bjarne Woods.

Explore further: Amniotic stem cells demonstrate healing potential

More information: Roksana Moraghebi et al. Term amniotic fluid: an unexploited reserve of mesenchymal stromal cells for reprogramming and potential cell therapy applications, Stem Cell Research & Therapy (2017). DOI: 10.1186/s13287-017-0582-6

Related Stories

Amniotic stem cells demonstrate healing potential

April 9, 2015
Rice University and Texas Children's Hospital scientists are using stem cells from amniotic fluid to promote the growth of robust, functional blood vessels in healing hydrogels.

Study shows amniotic fluid stem cells, heart cells pass signals without touching

May 2, 2013
Stem cells drawn from amniotic fluid show promise for tissue engineering, but it's important to know what they can and cannot do. A new study by researchers at Rice University and Texas Children's Hospital has shown that ...

Fetal membranes may help transform regenerative medicine

August 30, 2017
A new review looks at the potential of fetal membranes, which make up the amniotic sac surrounding the fetus during pregnancy, for regenerative medicine.

Recommended for you

Fetal gene therapy prevents fatal neurodegenerative disease

July 16, 2018
A fatal neurodegenerative condition known as Gaucher disease can be prevented in mice following fetal gene therapy, finds a new study led by UCL, the KK Women's and Children's Hospital and National University Health System ...

Scientists find malformations and lower survival rates in zebrafish embryos exposed to cannabinoids

July 16, 2018
Exposure to the main chemical components of cannabis has a detrimental effects on developing zebrafish embryos, according to a new study conducted by University of Alberta biologists.

Basic research in fruit flies leads to potential drug for diseases afflicting millions

July 13, 2018
River blindness and elephantiasis are debilitating diseases caused by parasitic worms that infect as many as 150 million people worldwide. They are among the "neglected tropical diseases" for which better treatments are desperately ...

Light based cochlear implant restores hearing in gerbils

July 12, 2018
A team of researchers with members from a variety of institutions across Germany has developed a new type of cochlear implant—one based on light. In their paper published in the journal Science Translational Medicine, the ...

Researchers discover gene that controls bone-to-fat ratio in bone marrow

July 12, 2018
In an unexpected discovery, UCLA researchers have found that a gene previously known to control human metabolism also controls the equilibrium of bone and fat in bone marrow as well as how an adult stem cell expresses its ...

Intensive care patients' muscles unable to use fats for energy

July 12, 2018
The muscles of people in intensive care are less able to use fats for energy, contributing to extensive loss of muscle mass, finds a new study co-led by UCL, King's College London and Guy's and St Thomas' NHS Foundation Trust.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.