Harvesting stem cells from amniotic fluid

December 4, 2017

Amniotic fluid, the protective liquid surrounding an unborn baby, is discarded as medical waste during caesarean section deliveries. However, there is increasing evidence that this fluid is a source of valuable biological material, including stem cells with the potential for use in cell therapy and regenerative medicine. A team of scientists and clinicians at Lund University in Sweden have now developed a multi-step method, including a unique collection device and new cell harvesting and processing techniques, that enables term amniotic fluid to be safely harvested for large quantities of cells.

The new method is used in combination with full-term deliveries, and with millions of caesarean sections performed worldwide each year, it opens the potential for an unexploited reserve of and valuable bioactive molecules in the surrounding the baby to be utilized.

"We showed that using our device, we can collect up to a litre of at full-term caesarean deliveries. The collection added on average 90 seconds to the operation, and was safe for both mother and child," says Associate Professor Andreas Herbst, lead clinician and a corresponding author of the study.

The collection device, which has been constructed with bio-inert plastics and 3-D-printing techniques, forms a seal with the fetal cavity, enabling gentle and sterile collection of large volumes of amniotic fluid, while being completely safe for mother and baby. The collected fluid contains specialized with high therapeutic potential. The cell type that the current protocol purifies is called a Mesenchymal Stem Cell (MSC).

MSCs can obtained from other tissues in the body, and have already demonstrated therapeutic potential for immune and inflammatory-mediated diseases, for example, cardiovascular disease, diabetes, arthritis, and neurodegenerative disorders. However, the difficulty in acquiring sufficient numbers of these cells limits their broad use in cell therapy and tissue repair applications. "Full term amniotic fluid, being an easily obtainable and abundant tissue source, may be the solution for MSC based cell therapy and regenerative medicine applications", says Associate Professor Niels-Bjarne Woods, a corresponding author in the study.

Credit: Lund University

Since the collections involve planned Caesarean sections, no additional invasive medical procedures are needed for the MSC isolation, in contrast to MSC isolation from bone marrow.

The research group has also shown another potential use for MSCs purified from full-term amniotic fluid. By converting these cells to an embryonic-like stem cell state, they can potentially give rise to all different cell types of the body, including neural cells, blood cells and heart cells, among others.

"The combination of this novel device and the coupled cellular selection and cultivation methods could be transformative for the stem cell field, as large quantities of newborn-MSC's can be provided by utilizing this waste material. The safety standards we adhere to are also a central component for gaining clinical acceptance. The obvious next step would be to evaluate these cells further in the laboratory and, if successful, in disease models", says Dr Marcus Larsson, clinician and a corresponding author on the publication.

The long-term goal is that amniotic fluid collection will be adopted in clinics worldwide, and by doing so, the numbers of suitably matched MSCs obtained would rapidly increase to finally be sufficient to treat any genetically matched person in need of individualized MSC based therapy.

"Now that we have demonstrated the feasibility to access this neonatal MSC source, our hope is that many more research groups will start working with these cells. This will accelerate our understanding of their full therapeutic potential", says Dr. Niels-Bjarne Woods.

Explore further: Amniotic stem cells demonstrate healing potential

More information: Roksana Moraghebi et al. Term amniotic fluid: an unexploited reserve of mesenchymal stromal cells for reprogramming and potential cell therapy applications, Stem Cell Research & Therapy (2017). DOI: 10.1186/s13287-017-0582-6

Related Stories

Amniotic stem cells demonstrate healing potential

April 9, 2015
Rice University and Texas Children's Hospital scientists are using stem cells from amniotic fluid to promote the growth of robust, functional blood vessels in healing hydrogels.

Study shows amniotic fluid stem cells, heart cells pass signals without touching

May 2, 2013
Stem cells drawn from amniotic fluid show promise for tissue engineering, but it's important to know what they can and cannot do. A new study by researchers at Rice University and Texas Children's Hospital has shown that ...

Fetal membranes may help transform regenerative medicine

August 30, 2017
A new review looks at the potential of fetal membranes, which make up the amniotic sac surrounding the fetus during pregnancy, for regenerative medicine.

Recommended for you

Drug found that induces apoptosis in myofibroblasts reducing fibrosis in scleroderma

December 15, 2017
(Medical Xpress)—An international team of researchers has found that the drug navitoclax can induce apoptosis (self-destruction) in myofibroblasts in mice, reducing the spread of fibrosis in scleroderma. In their paper ...

How defeating THOR could bring a hammer down on cancer

December 14, 2017
It turns out Thor, the Norse god of thunder and the Marvel superhero, has special powers when it comes to cancer too.

Researchers track muscle stem cell dynamics in response to injury and aging

December 14, 2017
A new study led by researchers at Sanford Burnham Prebys Medical Discovery Institute (SBP) describes the biology behind why muscle stem cells respond differently to aging or injury. The findings, published in Cell Stem Cell, ...

'Human chronobiome' study informs timing of drug delivery, precision medicine approaches

December 13, 2017
Symptoms and efficacy of medications—and indeed, many aspects of the human body itself—vary by time of day. Physicians tell patients to take their statins at bedtime because the related liver enzymes are more active during ...

Study confirms link between the number of older brothers and increased odds of being homosexual

December 12, 2017
Groundbreaking research led by a team from Brock University has further confirmed that sexual orientation for men is likely determined in the womb.

Potassium is critical to circadian rhythms in human red blood cells

December 12, 2017
An innovative new study from the University of Surrey and Cambridge's MRC Laboratory of Molecular Biology, published in the prestigious journal Nature Communications, has uncovered the secrets of the circadian rhythms in ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.