Study suggests a way to stop HIV in its tracks

December 1, 2017, Loyola University Health System
HIV-1 Virus. Credit: J Roberto Trujillo/Wikipedia

When HIV-1 infects an immune cell, the virus travels to the nucleus so quickly there's not enough time to set off the cell's alarm system.

Now, a Loyola University Chicago study has discovered the protein that helps the virus travel so fast. Researchers found that without this protein, the virus became stranded in the cytoplasm, where it was detected by the viral defense system. (The cytoplasm is the portion of the cell outside the nucleus.)

"By preventing its normal movement, we essentially turned HIV-1 into a sitting duck for cellular sensors," said Edward M. Campbell, PhD, corresponding author of the study, published in the Proceedings of the National Academy of Sciences. Campbell is an associate professor in the Department of Microbiology and Immunology of Loyola University Chicago Stritch School of Medicine.

HIV-1 infects and kills immune system cells, including T cells and macrophages that were used in the study. This cripples the immune system, making the patient vulnerable to common bacteria, viruses and other pathogens that are usually harmless in people with healthy immune systems.

After HIV-1 enters a cell, it has to work its way through the cytoplasm to the nucleus. Once inside the nucleus, HIV-1 takes control of the cell and makes additional HIV-1 copies. But getting through the cytoplasm is not easy. Cytoplasm consists of fluid that is thick with proteins and structures such as mitochondria. "Something the size of a virus cannot just diffuse through the cytoplasm," Campbell said. "It would be like trying to float to the bathroom in a very crowded bar. You need to have a plan."

HIV-1 is able to get to the nucleus quickly via tubular tracks called microtubules. The virus attaches itself to a molecular motor called dynein, which moves down the microtubule like a train car on tracks.

Campbell and colleagues discovered the "ticket" HIV-1 needs to get on the train—a protein called bicaudal D2. HIV-1 binds to bicaudal D2, which recruits the dynein . The dynein then transports HIV-1 towards the .

The finding raises the possibility of developing a drug that would prevent HIV-1 from binding to bicaudal D2, thus stranding the in the . This would not only prevent infection, but also give the cell time to turn on antiviral genes that would protect it and neighboring from infection.

The study is titled "Bicaudal D2 facilitates the cytoplasmic trafficking and nuclear import of HIV-1 genomes during infection."

Explore further: Study reveals how HIV enters cell nucleus

More information: Adarsh Dharan et al, Bicaudal D2 facilitates the cytoplasmic trafficking and nuclear import of HIV-1 genomes during infection, Proceedings of the National Academy of Sciences (2017). DOI: 10.1073/pnas.1712033114

Related Stories

Study reveals how HIV enters cell nucleus

June 21, 2016
Loyola University Chicago scientists have solved a mystery that has long baffled HIV researchers: How does HIV manage to enter the nucleus of immune system cells?

Protein identified as important trigger of antiviral response

May 7, 2014
Cells have to protect themselves: against damage in their genetic material for one thing, but also against attack from the outside, by viruses for example. They do this by using different mechanisms: special proteins search ...

HIV infection hijacks intracellular highways

September 27, 2017
A Northwestern Medicine study found the human immunodeficiency virus (HIV) uses proteins called diaphanous-related formins (DRFs) to hijack the cytoskeleton of healthy cells, findings that deepen the understanding of HIV ...

Novel approach to track HIV infection

August 18, 2017
Northwestern Medicine scientists have developed a novel method of tracking HIV infection, allowing the behavior of individual virions—infectious particles—to be connected to infectivity.

Recommended for you

HIV exports viral protein in cellular packages

February 15, 2018
HIV may be able to affect cells it can't directly infect by packaging a key protein within the host's cellular mail and sending it out into the body, according to a new study out of a University of North Carolina Lineberger ...

Can gene therapy be harnessed to fight the AIDS virus?

February 13, 2018
For more than a decade, the strongest AIDS drugs could not fully control Matt Chappell's HIV infection. Now his body controls it by itself, and researchers are trying to perfect the gene editing that made this possible.

Big data methods applied to the fitness landscape of the HIV envelope protein

February 7, 2018
Despite significant advances in medicine, there is still no effective vaccine for the human immunodeficiency virus (HIV), although recent hope has emerged through the discovery of antibodies capable of neutralizing diverse ...

Scientists report big improvements in HIV vaccine production

February 5, 2018
Research on HIV over the past decade has led to many promising ideas for vaccines to prevent infection by the AIDS virus, but very few candidate vaccines have been tested in clinical trials. One reason for this is the technical ...

Microbiome research refines HIV risk for women

January 25, 2018
Drawing from data collected for years by AIDS researchers in six African nations, scientists have pinpointed seven bacterial species whose presence in high concentrations may significantly increase the risk of HIV infection ...

Researchers find latent HIV reservoirs inherently resistant to elimination by CD8+ T-cells

January 22, 2018
The latest "kick-and-kill" research to eliminate the HIV virus uncovered a potential obstacle in finding a cure. A recent study by researchers at the George Washington University (GW) found that latent HIV reservoirs show ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.