Clarifying the interplay between bone cells in bone remodeling

January 23, 2018, Osaka University
Fig.1 Simultaneous visualization of mOBs and mOCs in living bones using intravital two-photon microscopy. (A) A Tiling image of skull bone tissues. Cyan, mOBs; red, mOCs; blue, bone tissues. Scale bar, 300 μm. (B) Magnified images of colony region (left panels) and contact area (right panels). Open arrowheads, separated mOBs and mOCs; filled arrowheads, direct mOB-mOC contact. Scale bar, 20 μm. Credit: Osaka University

Bones have numerous functions, including providing mechanical support of soft tissues, acting as levers for muscle action, and protecting the central nervous system. To accomplish their functions, bones undergo continuous destruction (resorption) carried out by osteoclasts, and formation by osteoblasts.

In the adult skeleton, the two processes must be in balance to maintain a constant, controlled amount of bone. An imbalance in the regulation can result in metabolic bone diseases, such as osteoporosis. Therefore, it is important to understand the spatial-temporal relationship and interaction between osteoblasts and terminally differentiated osteocytes () and osteoclasts in vivo. However, it remains controversial whether these physically interact with each other in . A multicenter study centered at Osaka University was conducted to elucidate this knowledge. The findings were recently published in Nature Communications.

"Using an intravital two-photon microscopy technique we developed, we investigated the communication between mature osteoblasts (mOBs) and mature osteoclasts (mOCs) in vivo," study first author Masayuki Furuya explains. "mOBs and mOCs were visualized simultaneously in living skull bone tissues from transgenic mice that express enhanced cyan fluorescent protein (ECFP) driven mOBs and a red fluorescing protein controlled by mOCs."

Intravital two-photon bone imaging is superior compared with conventional analyses of the shape and form of a tissue because it enables two-dimensional scanning in bone in a focal plane to observe cell shapes and the appearance of mOBs and mOCs in the body. Through this visualization method, the researchers successfully captured images of osteoblasts and osteoclasts interacting in real-time in living bone tissue. Next, the number and duration of mOB-mOC contact was analyzed using three-dimensional colocalization. mOBs and mOCs were found to mainly occupy discrete territories in the in the steady state, although direct cell-to-cell contact exist in a spatiotemporally limited fashion.

Fig.2 Direct contact with mOBs inhibits the bone-resorbing activity of mOCs. (A) Images of bone-resorptive activity in skull bone tissues using a pH-sensing chemical probe. Green, pH probe; Cyan, mOBs; red, mOCs; yellow, contact areas; filled arrowheads, areas of mOB-mOC contact; open arrowheads, separated mOBs and mOCs. The actual values of bone-resorbing index (BRI) are shown to the right of the images. (B) Assessment of BRI of mOCs in contact, or not, with mOBs. Credit: Osaka University

Additionally, using a pH-sensing fluorescence probe, the team found that mOCs secrete protons (subatomic particles with a positive electrical charge) for when they are not in contact with mOBs, whereas mOCs contacting mOBs are non-resorptive, suggesting that mOBs can inhibit resorption by direct contact.

"Although the molecular mechanisms involved in direct cell contact remain elusive, our study clearly demonstrates an important concept that dynamic communication between mOBs and mOCs regulates ," corresponding author Masaru Ishii says. "Our results have potential to lead to development of a new line of therapy for modifying the association properties of these two cell types, especially in osteoporosis and tumor metastasis in bones."

Explore further: Study offers new hope for treatment of osteoporosis

More information: Masayuki Furuya et al. Direct cell–cell contact between mature osteoblasts and osteoclasts dynamically controls their functions in vivo, Nature Communications (2018). DOI: 10.1038/s41467-017-02541-w

Related Stories

Study offers new hope for treatment of osteoporosis

March 22, 2016
An international study by The University of Western Australia may lead to a new treatment for osteoporosis caused by age-related bone loss in elderly women.

Muscle paralysis may increase bone loss

December 15, 2017
Muscle paralysis rapidly causes inflammation in nearby bone marrow, which may promote the formation of large cells that break down bone, a new study finds. The article is published in the American Journal of Physiology—Cell ...

Study shows how atherosclerosis and osteoporosis are linked

May 6, 2016
Patients with atherosclerosis—the buildup of cholesterol and fat in arteries—are at a higher risk of osteoporosis. A new study published in the American Journal of Physiology—Endocrinology and Metabolism shows how the ...

Elucidation of bone regeneration mechanism

November 3, 2017
How osteoblasts are supplied during bone regeneration has been controversial among bone researchers. According to Atsushi Kawakami, an Associate Professor who specializes in tissue regeneration and led the study, scientists ...

Estrogen regulates pathological changes of bones via bone lining cells

July 28, 2017
The female sex hormone estrogen plays an important role in the structural stability of bones. To date, however, it had been unclear exactly which cells were involved in the hormone's protective function in preventing changes ...

Research identifies how master regulator, bone-building protein can be used for therapy

June 21, 2017
The WNT1 ligand has previously been identified in bone disease, but its role in bone homeostasis, its cellular source and targets in bone have only just recently been identified. The research, led by Dr. Brendan Lee at Baylor ...

Recommended for you

New blood test to detect liver damage in under an hour

May 24, 2018
A quick and robust blood test that can detect liver damage before symptoms appear has been designed and verified using clinical samples by a team from UCL and University of Massachusetts.

Selective neural connections can be reestablished in retina after injury, study finds

May 24, 2018
The brain's ability to form new neural connections, called neuroplasticity, is crucial to recovery from some types of brain injury, but this process is hard to study and remains poorly understood. A new study of neural circuit ...

Space-like gravity weakens biochemical signals in muscle formation

May 23, 2018
Astronauts go through many physiological changes during their time in spaceflight, including lower muscle mass and slower muscle development. Similar symptoms can occur in the muscles of people on Earth's surface, too. In ...

Eating at night, sleeping by day swiftly alters key blood proteins

May 21, 2018
Staying awake all night and sleeping all day for just a few days can disrupt levels and time of day patterns of more than 100 proteins in the blood, including those that influence blood sugar, energy metabolism, and immune ...

Hotter bodies fight infections and tumours better—researchers show how

May 21, 2018
The hotter our body temperature, the more our bodies speed up a key defence system that fights against tumours, wounds or infections, new research by a multidisciplinary team of mathematicians and biologists from the Universities ...

Deep space radiation treatment reboots brain's immune system

May 21, 2018
Planning a trip to Mars? You'll want to remember your anti-radiation pills.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.