Study shows how body prevents potentially useful bacteria from causing disease

February 7, 2018, NYU Langone Health
Credit: CC0 Public Domain

A new study reveals a mechanism by which the immune system may decide whether a bacterial species is a partner in bodily processes or an invader worthy of attack.

The study, led by NYU School of Medicine researchers and published February 7 in Nature, relates to the theory that our bodies co-evolved with bacteria over millions of years. Over that time, microbes gradually came to help regulate bodily processes from digestion to energy processing to immune defenses.

To make this possible, the body had to develop mechanisms by which it "tolerates" the presence of potentially helpful bacteria, not attacking them as foreign invaders. Complicating matters, many species - including those in the Helicobacter family - are helpful, or at least harmless, normally, but cause disease when genetic or environmental factors alter the normal balance.

Called pathobionts, such bacteria can shift in the eyes of immune from friendly (commensal) to dangerous, triggering inflammation - a rush of cells and proteins meant to destroy bacteria, but that damage the body's cells in the wrong context.

The degree to which the immune system tolerates a given bacterium depends on this friend/foe decision, and the current study reveals a related mechanism in mice exposed to Helicobacter hepaticus. While it is still unknown whether this species is helpful to gut function in mice, it can be dangerous in some instances, much as the helpful species Helicopbacter pylori can cause ulcers and stomach cancer in humans.

"Our findings represent a significant step toward clarifying the mechanisms that help the body manage the risk of keeping potentially dangerous, but often useful, bacteria around," says lead study author Dan Littman, MD, PhD, the Helen L. and Martin S. Kimmel Professor of Molecular Immunology in the Department of Pathology at NYU Langone Health.

Careful Balance

The new study found that the level to which the immune systems of mice tolerated H. hepaticus is determined by the interplay of two types of T cell, which control whether the immune response to a microbe amplifies.

Some not-yet-identified molecule - or combination of molecules (e.g. proteins, fats, or sugars) - made by bacteria cause the immune system to produce T helper 17 cells (Th17), which trigger a surge in inflammation as part of the response to a pathogenic strain. The current study suggests that the mammalian immune system has evolved such that each group of Th17 cells specific to a pathobiont bacterial species is paired with a second set of T regulatory cells that shuts down those Th17 cells, creating tolerance to the bacterial strain at hand.

The most interesting aspect of the study, say the authors, is the discovery of a new, specialized function of a certain type of regulatory T cell, which is to enable microbes to play useful roles by keeping them from causing inflammation. Just as important, evidence suggests that defects in such cells may enable bacteria to drive common inflammatory bowel diseases (IBD) like Crohn's and ulcerative colitis.

The current study suggests that a new mouse model, in which the specialized T are missing, may help to finally identify the bacterial species contributing to IBD in humans, says Littman. In terms of mechanism, the authors found that the presence of H. hepaticus, even as it triggers inflammation via Th17 cells, also indirectly turns on genes that instruct immature precursor T cells to become Tregs.

It may be that specific T cell pairs manage tolerance of a great many pathobiont species, say the researchers, but additional studies would need to confirm that the mechanism applies beyond H. hepaticus. The authors say their next step will be to introduce gut from IBD patients into the mouse model with the goal of identifying pathobiont species that drive human disease.

"The current work suggests that pathobiont-driven IBD may be dependent on T cells that have escaped the normal tolerance system, attacking bacterial that do not normally cause inflammation," says Littman, also a member of the Kimmel Center for Biology and Medicine within NYU Langone's Skirball Institute for Biomolecular Medicine, and an investigator for the Howard Hughes Medical Institute. "If confirmed, future treatments may consist of groups of , or key pieces of them, chosen because they can turn on sets of Tregs to quiet overall gut inflammation."

Explore further: Different strains of same bacteria trigger widely varying immune responses

More information: c-Maf-dependent regulatory T cells mediate immunological tolerance to a gut pathobiont, Nature (2018). nature.com/articles/doi:10.1038/nature25500

Related Stories

Different strains of same bacteria trigger widely varying immune responses

January 11, 2018
Genetic differences between different strains of the same pathogenic bacterial species appear to result in widely varying immune system responses, according to new research published in PLOS Pathogens.

Effect of gut bacteria on specific immune cells underlies persistent liver inflammation

January 16, 2018
Persistent liver inflammation in sufferers of chronic viral hepatitis is likely caused by interactions between pro-inflammatory immune cells in the liver and products from gut bacteria, according to new work involving A*STAR ...

Mice fed tryptophan develop immune cells that foster a tolerant gut

August 3, 2017
Immune cells patrol the gut to ensure that harmful microbes hidden in the food we eat don't sneak into the body. Cells that are capable of triggering inflammation are balanced by cells that promote tolerance, protecting the ...

Unexpected molecular partners may offer new way to counter inflammatory diseases

December 16, 2015
When overactive or off target, certain cells in the immune system that normally fight infection instead attack a person's own tissue. This process fuels inflammation as part of autoimmune diseases. Now, a study from researchers ...

Recommended for you

Study demonstrates new treatment for severe asthma

May 22, 2018
Researchers from McMaster University and the Firestone Institute for Respiratory Health at St. Joseph's Healthcare Hamilton, together with colleagues at other partnering institutions, have developed a new method to treat ...

Eczema drug effective against severe asthma

May 21, 2018
Two new studies of patients with difficult-to-control asthma show that the eczema drug dupilumab alleviates asthma symptoms and improves patients' ability to breathe better than standard therapies. Dupilumab, an injectable ...

Neuron guidance factor found to play a key role in immune cell function

May 21, 2018
Macrophages are white blood cells involved in a variety of biological functions, from destroying infectious pathogens to repairing damaged tissue. To carry out their different roles, macrophages must first be activated and ...

Immune cells hold promise in slowing down ALS

May 21, 2018
Recent research from Houston Methodist Hospital showed that a new immunotherapy was safe for patients with ALS and also revealed surprising results that could bring hope to patients who have this relentlessly progressive ...

First clues to the causes of multiple sclerosis

May 16, 2018
Multiple sclerosis, which affects one in 1,000 people, is frequently characterised by relapses associated with variable functional impairments including among others vision problems, impairment of locomotor functions or difficulties ...

A high-fiber diet protects mice against the flu virus

May 15, 2018
Dietary fiber increases survival in influenza-infected mice by setting the immune system at a healthy level of responsiveness, according to a preclinical study published May 15th in the journal Immunity. A high-fiber diet ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.