Study explores emerging role of NAD+ in innate and adaptive immune responses

February 23, 2018, Brigham and Women's Hospital

Researchers at Brigham and Women's Hospital (BWH) have discovered a new cellular and molecular pathway that regulates CD4+ T cell response—a finding that may lead to new ways to treat diseases that result from alterations in these cells. Their discovery, published online in the Journal of Allergy and Clinical Immunology, shows that administering nicotinamide adenine dinucleotide (NAD+), a natural molecule found in all living cells, shuts off the capacity of dendritic cells and macrophages to dictate CD4+ T fate. Researchers found that NAD+ administration regulated CD4+ T cells via mast cells (MCs), cells that have been mainly described in the context of allergy, exclusively.

"This is a novel cellular and molecular pathway that is distinct from the two major pathways that were previously known. Since it is distinct and since it has the ability to regulate the immune system systemically, we can use it as an alternative to bypass the current pathways," said Abdallah ElKhal, PhD, BWH Department of Surgery, senior study author.

CD4+ T and dendritic cells play a central role in immunity. Alterations or aberrant dendritic cells and T cell responses can lead to many health conditions including , infections, allergy, primary immunodeficiencies and cancer.

As of today, two major pathways have been described to regulate CD4+ T cell response. The first pathway was described by Peter C. Doherty and Rolf M. Zinkernagel (1996 Nobel prize winners) showing the requirement of MHC-TCR signaling machinery. More recently, a second mechanism involving the Pathogen or Damage Associated Molecular Patterns (PAMPs or DAMPs) was unraveled by Bruce A. Beutler and Jules A. Hoffmann (2011 Nobel Prize winners). Of importance, both pathways require antigen presenting cells (APCs) in particular (DCs) or macrophages (Mφ). Elkhal's novel pathway is distinct from the two previous ones and may offer a path forward for novel therapeutic approaches.

For the current study, BWH researchers performed pre-clinical trials using an experimental infection model. They showed that mast cell-mediated CD4+ T cell response protects against lethal doses of infection (Listeria monocytogenes). Mice treated with NAD+ had a dramatically increased survival rate when compared to the non-treated group.

"Collectively, our study unravels a novel cellular and molecular pathway that regulates innate and adaptive immunity via MCs, exclusively, and underscores the therapeutic potential of NAD+ in the context of a myriad of diseases including autoimmune diseases, hemophilia, primary immunodeficiencies and antimicrobial resistance," said Elkhal.

Explore further: How viruses disarm the immune system

More information: Hector Rodriguez Cetina Biefer et al, Mast cells regulate CD4+ T cell differentiation in absence of antigen presentation, Journal of Allergy and Clinical Immunology (2018). DOI: 10.1016/j.jaci.2018.01.038

Related Stories

How viruses disarm the immune system

February 5, 2018
How do viruses that cause chronic infections, such as HIV or hepatitis c virus, manage to outsmart their hosts' immune systems?

Study provides insights on immune cells involved in kidney disease

December 7, 2017
Researchers have uncovered new information on cells involved in the body's immune response following kidney injury. The findings, which appear in an upcoming issue of the Journal of the American Society of Nephrology (JASN), ...

A new pathway discovered regulating autoimmune diseases

October 7, 2014
The main function of the immune system is to protect against diseases and infections. For unknown reasons our immune system attacks healthy cells, tissues and organs in a process called autoimmunity, which can result in diseases ...

Skin sentry cells promote distinct immune responses

July 21, 2011
A new study reveals that just as different soldiers in the field have different jobs, subsets of a type of immune cell that polices the barriers of the body can promote unique and opposite immune responses against the same ...

How do cells release IL-1? After three decades, now we know

November 28, 2017
Researchers at Boston Children's Hospital have identified, for the first time, the molecule that enables immune cells to release interleukin-1 (IL-1), a key part of our innate immune response to infections. Findings were ...

Battle hymns and lullabies: Scientist sheds light on the T cell orchestra

October 27, 2016
In research published in the prestigious journal Immunity, a Saint Louis University researcher reports new findings that help understand how the immune system's dendritic cells direct other immune cells called T lymphocytes ...

Recommended for you

Composition of complex sugars in breast milk may prevent future food allergies

June 12, 2018
The unique composition of a mother's breastmilk may help to reduce food sensitization in her infant, report researchers at the University of California San Diego School of Medicine with colleagues in Canada.

Drug may quell deadly immune response when trauma spills the contents of our cells' powerhouses

June 11, 2018
When trauma spills the contents of our cell powerhouses, it can evoke a potentially deadly immune response much like a severe bacterial infection.

Immune system does not recover despite cured hepatitis C infection

June 11, 2018
Changes to the immune system remain many years after a hepatitis C infection heals, a new study by researchers at Karolinska Institutet, Sweden, and Hannover Medical School, Germany, shows. The findings, presented in Nature ...

Food allergies connected to children with autism spectrum disorder

June 8, 2018
A new study from the University of Iowa finds that children with autism spectrum disorder (ASD) are more than twice as likely to suffer from a food allergy than children who do not have ASD.

A 'super' receptor that helps kill HIV infected cells

June 8, 2018
While treatments for HIV mean that the disease is no longer largely fatal, the world still lacks a true therapy that can eradicate the virus across a globally—and genetically different—population.

Antibody blocks inflammation, protects mice from hardened arteries and liver disease

June 6, 2018
Researchers at University of California San Diego School of Medicine discovered that they can block inflammation in mice with a naturally occurring antibody that binds oxidized phospholipids (OxPL), molecules on cell surfaces ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.