Huntington's disease provides new cancer weapon

February 12, 2018, Northwestern University
A montage of three images of single striatal neurons transfected with a disease-associated version of huntingtin, the protein that causes Huntington's disease. Nuclei of untransfected neurons are seen in the background (blue). The neuron in the center (yellow) contains an abnormal intracellular accumulation of huntingtin called an inclusion body (orange). Credit: Wikipedia/ Creative Commons Attribution 3.0 Unported license

Patients with Huntington's disease, a fatal genetic illness that causes the breakdown of nerve cells in the brain, have up to 80 percent less cancer than the general population.

Northwestern Medicine scientists have discovered why Huntington's is so toxic to and harnessed it for a novel approach to treat cancer, a new study reports.

Huntington's is caused by an over abundance of a certain type of repeating RNA sequences in one gene, huntingtin, present in every cell. The defect that causes the disease also is highly toxic to tumor . These repeating sequences—in the form of so-called small interfering RNAs—attack genes in the cell that are critical for survival. Nerve cells in the brain are vulnerable to this form of cell death, however, cancer cells appear to be much more susceptible.

"This molecule is a super assassin against all ," said senior author Marcus Peter, the Tom D. Spies Professor of Cancer Metabolism at Northwestern University Feinberg School of Medicine. "We've never seen anything this powerful."

Huntington's disease deteriorates a person's physical and mental abilities during their prime working years and has no cure.

The study will be published Feb. 12 in the journal EMBO Reports.

To test the super assassin molecule in a treatment situation, Peter collaborated with Dr. Shad Thaxton, associate professor of urology at Feinberg, to deliver the molecule in nanoparticles to mice with human ovarian cancer. The treatment significantly reduced the tumor growth with no toxicity to the mice, Peter said. Importantly, the tumors did not develop resistance to this form of cancer treatment.

Peter and Thaxton are now refining the delivery method to increase its efficacy in reaching the tumor. The other challenge for the scientists is figuring out how to stabilize the nanoparticles, so they can be stored.

First and co-corresponding author Andrea Murmann, research assistant professor in medicine at Feinberg, also used the molecule to treat human and mouse ovarian, breast, prostate, liver, brain, lung, skin and colon cancer cell lines. The molecule killed all cancer cells in both species.

The Huntington's cancer weapon was discovered by Murmann, who had worked with Peter on earlier research that identified an ancient kill-switch present in all cells that destroys cancer.

"I thought maybe there is a situation where this kill switch is overactive in certain people, and where it could cause loss of tissues," Murmann said. "These patients would not only have a disease with an RNA component, but they also had to have less cancer."

She started searching for diseases that have a lower rate of cancer and had a suspected contribution of RNA to disease pathology. Huntington's was the most prominent.

When she looked at the repeating sequences in huntingtin, the gene that causes the disease, she saw a similar composition to the earlier kill switch Peter had found. Both were rich in the C and G nucleotides (molecules that form the building blocks of DNA and RNA).

"Toxicity goes together with C and G richness," Murmann said. "Those similarities triggered our curiosity."

In the case of people who have Huntington's, the gene huntingtin has too many repeating sequences of the triplet sequence CAG. The longer the repeating sequence, the earlier they will develop the disease.

"We believe a short-term treatment cancer therapy for a few weeks might be possible, where we could treat a patient to kill the cells without causing the neurological issues that Huntington's patients suffer from," Peter said.

Peter also is co-leader of the Translational Research in Solid Tumors Program at the Robert H. Lurie Comprehensive Cancer Center of Northwestern University.

Huntington's patients have a lifetime exposure to these toxic RNA sequences, but generally don't develop symptoms of the disease until age 40, he noted.

Every child of a parent with Huntington's has 50/50 chance of carrying the faulty gene. Today, there are approximately 30,000 symptomatic Americans and more than 200,000 at-risk of inheriting the disease.

Explore further: Suicide molecules kill any cancer cell

Related Stories

Suicide molecules kill any cancer cell

October 19, 2017
Small RNA molecules originally developed as a tool to study gene function trigger a mechanism hidden in every cell that forces the cell to commit suicide, reports a new Northwestern Medicine study, the first to identify molecules ...

Uncovering the early origins of Huntington's disease

January 29, 2018
With new findings, scientists may be poised to break a long impasse in research on Huntington's disease, a fatal hereditary disorder for which there is currently no treatment.

Huntington's disease linked to dysfunction of brain structure

December 21, 2016
Northwestern Medicine scientists identified a link between Huntington's disease and dysfunction of the subthalamic nucleus, a component of the basal ganglia, a group of brain structures critical for movement and impulse control.

Scientists develop therapeutic protein, protect nerve cells from Huntington's Disease

September 13, 2016
A new scientific study reveals one way to stop proteins from triggering an energy failure inside nerve cells during Huntington's disease. Huntington's disease is an inherited genetic disorder caused by mutations in the gene ...

Surprising new way to kill cancer cells

March 21, 2014
Northwestern Medicine scientists have demonstrated that cancer cells – and not normal cells – can be killed by eliminating either the FAS receptor, also known as CD95, or its binding component, CD95 ligand.

Huntington's disease gene dispensable in adult mice

March 7, 2016
Adult mice don't need the gene that, when mutated in humans, causes the inherited neurodegenerative disorder Huntington's disease.

Recommended for you

Function of neutrophils during tumor progression unraveled

October 15, 2018
Researchers at The Wistar Institute have characterized the function of neutrophils, a type of white blood cells, during early stages of tumor progression, showing that they migrate from the bone marrow to distant sites and ...

Delving where few others have gone, leukemia researchers open new path

October 15, 2018
A Wilmot Cancer Institute study uncovers how a single gene could be at fault in acute myeloid leukemia (AML), one of the deadliest cancers. The breakthrough gives researchers renewed hope that a gene-targeted therapy could ...

3-D mammography detected 34% more breast cancers in screening

October 15, 2018
In traditional mammography screening, all breast tissue is captured in a single image. Breast tomosynthesis, on the other hand, is three-dimensional and works according to the same principle as what is known as tomography. ...

More clues revealed in link between normal breast changes and invasive breast cancer

October 15, 2018
A research team, led by investigators from Georgetown Lombardi Comprehensive Cancer Center, details how a natural and dramatic process—changes in mammary glands to accommodate breastfeeding—uses a molecular process believed ...

Cancer stem cells use 'normal' genes in abnormal ways

October 12, 2018
CDK1 is a "normal" protein—its presence drives cells through the cycle of replication. And MHC Class I molecules are "normal" as well—they present bits of proteins on the surfaces of cells for examination by the immune ...

Obesity linked to increased risk of early-onset colorectal cancer

October 12, 2018
Women who are overweight or obese have up to twice the risk of developing colorectal cancer before age 50 as women who have what is considered a normal body mass index (BMI), according to new research led by Washington University ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.