Scientists create most sophisticated human liver model yet

February 13, 2018, Wake Forest University Baptist Medical Center

Scientists at Wake Forest Institute for Regenerative Medicine (WFIRM) have developed the most sophisticated mini-livers to date. These organoids can potentially help scientists better understand certain congenital liver diseases as well as speed up efforts to create liver tissue in the lab for transplantation into patients.

"This better mimics fetal development and function of the human liver," said Shay Soker, Ph.D., professor of at WFIRM, which is part of Wake Forest Baptist Medical Center. "We expect these organoids to advance our understanding of how liver diseases - especially congenital diseases—start and progress so improved treatments can be developed."

Soker was lead researcher on the study, which is reported in Hepatology.

The creation of living mini-organs is a relatively new area of science with the potential to replace animal models that are not always accurate. The liver organoids, made with human cells, are less than one-third inch in diameter. While scientists have already created liver organoids to screen new drugs for , the livers developed in this research represent several "firsts" in the quest to build a functional model of human liver development.

To make the organoids, scientists allow fetal liver progenitor cells, an immature cell that is destined to become a specialized liver cell, to self-assemble on a small disc. The discs are made of ferret liver that has been processed to remove all of the animal's cells. The resulting organoids, which assemble within two to three weeks, are the first to model actual human liver development.

The research is significant in two ways. First, the scientists showed that these organoids generated hepatocytes, the main functional of the liver. This achievement represents a milestone in work to create truly functional bioengineered for transplantation into patients.

Second, while other scientists have shown that lab-grown livers can generate , this is the first study to show the stepwise maturation of bile ducts exactly as can be observed in the human fetal liver. Bile ducts carry bile, a fluid that is secreted by the liver and collected in the gall bladder to digest fats. This model of bile ductal development can potentially be used to study the hereditary disease biliary atresia that occurs in infants. With this disease, bile drainage is impaired, making it fatal in the more severe cases.

"Altogether, the team has created a laboratory model of human development and that will help advance our understanding about bile duct formation," said first co-author Pedro Baptista, Pharm.D., Ph.D., who was with WFIRM at the time of the research.

"This is a big step toward advancing the bioengineering of functional livers and bile ducts and we look forward to using it in a variety of ways to improve human health," said first co-author Dipen Vyas, Ph.D., also at WFIRM at the time of the research.

Explore further: Artificial bile ducts grown in lab, transplanted into mice could help treat liver disease

Related Stories

Artificial bile ducts grown in lab, transplanted into mice could help treat liver disease

July 3, 2017
Cambridge scientists have developed a new method for growing and transplanting artificial bile ducts that could in future be used to help treat liver disease in children, reducing the need for liver transplantation.

Search for genetically stable bioengineered gut and liver tissue takes step forward

February 8, 2018
Before medical science can bioengineer human organs in a lab for therapeutic use, two remaining hurdles are ensuring genetic stability—so the organs are free from the risk of tumor growth—and producing organ tissues of ...

Recreating liver tumors as organoids for faster, more accurate drug screening

February 9, 2018
Liver cancer is one of the top causes of cancer deaths globally, with a lack of approved treatments. A major challenge in developing effective drugs for liver cancer is that current preclinical tumor models do not accurately ...

Model simulates biliary fluid dynamics in the liver and predicts drug-induced liver injuries

March 27, 2017
The liver is crucial for the detoxification of the human body. The exposure to toxins makes it particularly prone to drug-induced injury. Cholestasis, the impairment of bile flow, is therefore a common problem of drug development ...

New progress toward finding best cells for liver therapy

April 26, 2017
In a new study, researchers demonstrate successful transplantation of fetal rat liver cells to an injured adult rat liver. The work is an important step toward using transplanted cells to treat liver failure, which currently ...

Patient-derived organoids may help personalize the treatment of gastrointestinal cancers

January 17, 2018
A new BJS (British Journal of Surgery) review highlights the potential of 3D organoid models derived from patient cells to help personalize therapy for individuals with gastrointestinal cancers.

Recommended for you

Lab-on-a-chip delivers critical immunity data for vulnerable populations

April 25, 2018
For millions of displaced people around the world—many of them refugees, living in temporary shelters under crowded conditions—an outbreak of disease is devastating. Each year, the measles virus kills more than 134,000 ...

Want new medicines? You need fundamental research

April 25, 2018
Would we be wise to prioritize "shovel-ready" science over curiosity-driven, fundamental research programs? Would that set the stage for the discovery of more new medicines over the long term?

Implantable islet cells come with their own oxygen supply

April 25, 2018
Since the 1960s, researchers have been interested in the possibility of treating type 1 diabetes by transplanting islet cells—the pancreatic cells that are responsible for producing insulin when blood glucose concentration ...

'Incompatible' donor stem cells cure adult sickle cell patients

April 25, 2018
Doctors at the University of Illinois Hospital have cured seven adult patients of sickle cell disease, an inherited blood disorder primarily affecting the black community, using stem cells from donors previously thought to ...

Mammary stem cells challenge costly bovine disease

April 24, 2018
Mastitis is the most expensive disease in the dairy industry. Each clinical case can cost a dairy farmer more than $400 and damages both the cow's future output as well as her comfort.

Research explains link between exercise and appetite loss

April 24, 2018
Ever wonder why intense exercise temporarily curbs your appetite? In research described in today's issue of PLOS Biology, Albert Einstein College of Medicine researchers reveal that the answer is all in your head—more specifically, ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.