Researchers find new way to defeat HIV latency

March 8, 2018, UC Davis
HIV infecting a human cell. Credit: NIH

HIV, the virus that causes AIDS, has a secret life. Though anti-retroviral therapy can reduce its numbers, the virus can hide and avoid both treatments and the body's immune response.

Researchers at UC Davis Health, together with colleagues at UC San Francisco and the University of North Carolina at Chapel Hill, have found that increased crotonylation, an epigenetic mechanism that governs gene expression, might be the key to making HIV come out of hiding and become susceptible to anti-HIV drugs. Their study is published in The Journal of Clinical Investigation.

"We have been working on mechanisms that could be used to disrupt HIV ," said Satya Dandekar, chair of the UC Davis Department of Medical Microbiology and Immunology and senior author on the paper. "The goal is to force the virus to be expressed so it is visible to the immune system and can be targeted through immuno-therapeutics. This is the first study to identify histone crotonylation as a driver for HIV transcription and de-crotonylation of histone as an epigenetic marker for HIV silencing."

While medical science has transformed HIV/AIDS from a deadly disease to a chronic one, there are still millions of people living with the virus. HIV's ability to become dormant makes it invisible to both the immune system and treatments. Researchers have dedicated years to deciphering the mechanisms that help HIV hide and finding ways to reverse that process.

In this study, the researchers focused on histone crotonylation, an epigenetic mechanism that modifies the proteins that package DNA, affecting gene expression.

"Histone crotonylation regulates HIV latency," said UC Davis associate project scientist Guochun Jiang, first author on the paper. "If we can modulate that, the virus can be more efficiently flushed out."

To better understand this mechanism, the team focused on an enzyme called ACSS2, which plays an important role in fatty acid metabolism in the gut. HIV has often been linked to impairment of lipid metabolism, making ACSS2 a promising potential target for an HIV cure.

To test it out, the researchers studied peripheral blood samples from HIV-infected patients and several HIV latency cell models. Activating the ACSS2 enzyme increased viral transcription manifold. The results from patient samples were particularly encouraging.

"We examined well-characterized cell models of HIV latency and immune cells from HIV patients who had been undergoing antiretroviral therapy and had undetectable viral loads," Dandekar said. "In those samples, we were able to disrupt the HIV silencing by inducing histone crotonylation."

To further validate the results, the researchers treated samples with an ACSS2 inhibitor, which reduced detectable virus levels, highlighting the important role of decrotonylation in establishing HIV latency.

One of the more intriguing findings in the study was that increasing histone crotonylation works synergistically with other known anti-HIV latency molecules, such as the protein kinase C agonist PEP005 and the HDAC inhibitor vorinostat. Dandekar and her colleagues are now searching for more molecules that attack viral latency to develop an overall strategy of combining therapeutic agents to compel HIV expression.

"We are looking for synergistic disruption, by combining crotonylation with other mechanisms to reactivate HIV," Dandekar said. "This research positions us to screen and identify small molecules, which can be optimized to carry out HIV modification."

Explore further: Waking up HIV: Two compounds show great potential to rouse latent virus

More information: Guochun Jiang et al, HIV latency is reversed by ACSS2-driven histone crotonylation, Journal of Clinical Investigation (2018). DOI: 10.1172/JCI98071

Related Stories

Waking up HIV: Two compounds show great potential to rouse latent virus

July 30, 2015
Highly active anti-retroviral therapy (HAART) has helped millions survive the human immunodeficiency virus (HIV). Unfortunately, HIV has a built-in survival mechanism, creating reservoirs of latent, inactive virus that are ...

Vorinostat renders dormant HIV infection vulnerable to clearance

August 1, 2017
The ability for HIV to hide in the body in a dormant state makes curing the 40 million people living with the virus a challenge. Researchers at the University of North Carolina at Chapel Hill have shown the drug Vorinostat ...

HIV begins to yield secrets of how it hides in cells

March 2, 2018
UC San Francisco scientists have uncovered new mechanisms by which HIV hides in infected cells, resting in a latent state that evades the body's immune system and prevents antiviral drugs from flushing it out.

Researchers discuss challenges, successes of HIV cure research in science

July 21, 2016
A better understanding of HIV latency is the key to eradicating the virus researchers at the University of North Carolina and partner institutions write in a perspective in the journal Science. Worldwide, 37 million people ...

Epigenetic drugs show promise as antivirals

August 15, 2017
Some epigenetic pharmaceuticals have the potential to be used as broad spectrum antivirals, according to a study reported in a recent issue of the journal mBio. The study demonstrated that histone methyltransferases EZH2/1 ...

Recommended for you

HIV vaccine protects non-human primates from infection

December 14, 2018
For more than 20 years, scientists at Scripps Research have chipped away at the challenges of designing an HIV vaccine. Now new research, published in Immunity, shows that their experimental vaccine strategy works in non-human ...

Roadmap reveals shortcut to recreate key HIV antibody for vaccines

December 11, 2018
HIV evades the body's immune defenses through a multitude of mutations, and antibodies produced by the host's immune system to fight HIV also follow convoluted evolutionary pathways that have been challenging to track.

Eliminating the latent reservoir of HIV

December 7, 2018
A new study suggests that a genetic switch that causes latent HIV inside cells to begin to replicate can be manipulated to completely eradicate the virus from the human body. Cells harboring latent HIV are "invisible" to ...

New research highlights why HIV-infected patients suffer higher rates of cancer

December 5, 2018
AIDS patients suffer higher rates of cancer because they have fewer T-cells in their bodies to fight disease. But new research examines why HIV-infected patients have higher rates of cancer—among the leading causes of death ...

Focus on resistance to HIV offers insight into how to fight the virus

November 30, 2018
Of the 40 million people around the world infected with HIV, less than one per cent have immune systems strong enough to suppress the virus for extended periods of time. These special immune systems are known as "elite controllers." ...

Patients with rare natural ability to suppress HIV shed light on potential functional cure

November 27, 2018
Researchers at Johns Hopkins have identified two patients with HIV whose immune cells behave differently than others with the virus and actually appear to help control viral load even years after infection. Moreover, both ...

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

Rionoirble
5 / 5 (1) Mar 09, 2018
Seems like I have read this exact same story, in some form or another, every six months for the past 10 years. Let's stop jumping the gun. ;)

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.