Researchers close to understanding 'disease mechanisms' of ALS

March 8, 2018, Syracuse University
Credit: Courtesy of the ALS Foundation for Life

Syracuse University researchers are making strides in understanding the disease mechanism of amyotrophic lateral sclerosis (ALS), also known as Lou Gehrig's disease.

Carlos A. Castaneda, assistant professor of biology, chemistry and interdisciplinary neuroscience, and Thuy Dao, a postdoctoral researcher in chemistry, have been working with ubiquitin, a tiny molecule that tags obsolete proteins in a cell. They recently found that ubiquitin eliminates droplets of Ubiquilin-2 (UBQLN2) in solution.

The discovery is noteworthy, Castaneda says, because UBQLN2 is a protein-encoding gene, mutations to which cause ALS and various types of dementia, such as frontotemporal dementia (FTD).

"UBQLN2 is found in motor neuron inclusions of patients with ALS," he says. "We show that UBQLN2 undergoes liquid-liquid phase separation, in which proteins coalesce into protein-rich droplets to form membraneless organelles in cells. Interestingly, dysfunction of membraneless organelle assembly and disassembly is emerging as a common pathogenic mechanism of ALS and other neurodegenerative disorders."

The ALS Association supports the duo's research, which in turn is the subject of a major paper in the journal Molecular Cell.

Other authors include Brian Martyniak G'18, a second-year Ph.D. student in chemistry and biochemistry, who belongs to Castaneda's lab; members of J. Paul Taylor's research group from both St. Jude Children's Research Hospital and the Howard Hughes Medical Institute; and members of Heidi Hehnly's lab at SUNY Upstate Medical University.

"We want to understand the mechanisms that trigger motor neurons to degenerate in ALS," says Castaneda, the paper's lead contact. "It appears that pathological stress granules—membraneless organelles thought to be formed by liquid-liquid phase separation of RNA-binding proteins—trigger ALS and related disorders, leading to cell death."

Scientists know that when a eukaryotic cell is under stress, it causes certain proteins and RNA to form stress granules (SGs). While this is normal behavior, persistence of SGs or dysregulation of SG dynamics can promote disease states.

Castaneda and Dao, in collaboration with Taylor's group, showed that UBQLN2 was "recruited" to SGs. "This gives our work potential ALS relevance, since mutations in UBQLN2 might lead to defects in either SG assembly, or SG disassembly, or both," Castaneda says.

There are billions of neurons, or nerve cells, in the nervous system. (The brain alone has more than 100 billion of them.) When ALS attacks neurons, their corresponding muscles weaken and die. People with ALS eventually lose the ability to speak, eat, move or breathe.

Castaneda, who studies proteins associated with neurodegenerative and neuromuscular disease, explains that muscle weakness or stiffness is usually the first sign of ALS: "It is followed by atrophy and paralysis of the muscles of the limbs and trunk, and of the muscles controlling vital functions. The average survival time is three years after diagnosis."

Ubiquitin and UBQLN2 are part of what of Castaneda calls a "quality-control mechanism," which maintains proteins at their proper levels during the lifespan of a cell. (Unlike other cells, which live several days or weeks, neurons typically last an entire lifetime.) Any kind of disruption to protein homeostasis usually impairs neuronal development and function.

"We postulated—and eventually confirmed with microscopy and nuclear magnetic resonance spectroscopy—that ubiquitin disrupts UBQLN2 liquid-liquid phase separation," says Castaneda, who joined Syracuse's faculty in 2014. "This was significant because ubiquitin tags many proteins, at one point or another."

Castaneda ultimately hopes to redirect UBQLN2 out the "ubiquinated" substrates in SGs and into protein quality-control pathways. "UBQLN2 is like a shuttle, ferrying misfolded proteins to the cell's protein-recycling plant," he continues. "Under normal conditions, SGs dissipate when the stress condition is removed. However, if the condition impairs SG assembly in any way, ALS-linked RNA-binding proteins begin to aggregate."

While there is no cure for ALS, many people with the disease live longer, thanks to clinical management and two FDA-approved drugs: riluzole and radicava.

Castaneda is optimistic his innovative work with ubiquitin and UBQLN2 will achieve a greater understanding of ALS' molecular mechanisms and lead to a cure. "UBQLN2 interacts with other RNA-binding proteins, including TDP-43, which is found in 97 percent of inclusions of patients diagnosed with familial or sporadic ALS," he says. "I look forward to investigating these interactions."

Studies show that most people who develop ALS are between the ages of 40 and 70, with the disease being 20 percent more common in men. Although scientists struggle to determine the specific genetics or environmental factors that trigger ALS, they find that military veterans, particularly those deployed in the Gulf War from 1990-91, are twice as likely to develop the disease.

"Defects in recycling contribute to neurodegeneration," Castaneda says. "The more we understand UBQLN2's biological functions—specifically, how its mutations lead to ALS—the better able we can develop new therapies."

Explore further: Researchers identify how a single gene can protect against causes of neurodegenerative diseases

More information: Thuy P. Dao et al. Ubiquitin Modulates Liquid-Liquid Phase Separation of UBQLN2 via Disruption of Multivalent Interactions, Molecular Cell (2018). DOI: 10.1016/j.molcel.2018.02.004

Related Stories

Researchers identify how a single gene can protect against causes of neurodegenerative diseases

August 2, 2016
New research has identified how cells protect themselves against 'protein clumps' known to be the cause of neurodegenerative diseases including Alzheimer's, Parkinson's and Huntington's disease.

Technique allows live imaging of ubiquitin protein during cellular housekeeping

March 7, 2018
Homeostasis refers to the idea that cells have evolved an intricate set of systems allowing them to respond to their environment while maintaining an internal, physiologically healthy balance. These systems are especially ...

Researchers discover fundamental pathology behind ALS

August 16, 2017
A team led by scientists at St. Jude Children's Research Hospital and Mayo Clinic has identified a basic biological mechanism that kills neurons in amyotrophic lateral sclerosis (ALS) and in a related genetic disorder, frontotemporal ...

Newly identified mechanism solves enduring mystery of key element of cellular organization

September 24, 2015
St. Jude Children's Research Hospital scientists have discovered evidence of a mechanism at the heart of amyotrophic lateral sclerosis (ALS) and related degenerative diseases. The research appears in today's edition of the ...

Research reveals atomic-level changes in ALS-linked protein

January 18, 2018
For the first time, researchers have described atom-by-atom changes in a family of proteins linked to amyotrophic lateral sclerosis (ALS), a group of brain disorders known as frontotemporal dementia and degenerative diseases ...

Recommended for you

Study of protein 'trafficker' provides insight into autism and other brain disorders

September 22, 2018
In the brain, as in business, connections are everything. To maintain cellular associates, the outer surface of a neuron, its membrane, must express particular proteins—proverbial hands that reach out and greet nearby cells. ...

Breast milk may be best for premature babies' brain development

September 21, 2018
Babies born before their due date show better brain development when fed breast milk rather than formula, a study has found.

Early warning sign of psychosis detected

September 21, 2018
Brains of people at risk of psychosis exhibit a pattern that can help predict whether they will go on to develop full-fledged schizophrenia, a new Yale-led study shows. The findings could help doctors begin early intervention ...

White matter repair and traumatic brain injury

September 20, 2018
Traumatic brain injury (TBI) is a leading cause of death and disability in the U.S., contributing to about 30 percent of all injury deaths, according to the CDC. TBI causes damage to both white and gray matter in the brain, ...

Gut branches of vagus nerve essential components of brain's reward and motivation system

September 20, 2018
A novel gut-to-brain neural circuit establishes the vagus nerve as an essential component of the brain system that regulates reward and motivation, according to research conducted at the Icahn School of Medicine at Mount ...

Genomic dark matter activity connects Parkinson's and psychiatric diseases

September 20, 2018
Dopamine neurons are located in the midbrain, but their tendril-like axons can branch far into the higher cortical areas, influencing how we move and how we feel. New genetic evidence has revealed that these specialized cells ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.