With new model, scientists closer to finding sepsis treatment

March 9, 2018, Harvard University
Credit: Harvard University

Sepsis, or blood poisoning, occurs when the body's response to infection damages its own tissues and organs, leading to organ failure. It kills millions each year worldwide, and is the most common cause of death in people who have been hospitalized. Despite its prevalence, the standard treatment is to give patients antibiotics and fluids, and no new therapies have been developed in the last 30 years due to the high failure rate of sepsis treatments in clinical trials.

The animals typically used to test drug candidates in preclinical trials (mice and baboons) are poor proxies for human responses to sepsis, as they are frequently resistant to the pathogens that cause sepsis-inducing infections. Pigs are a much better model organism, as their immune systems and humans' share 80 percent of the same machinery, their blood clotting is similar, and their large size allows their vitals to be monitored in real time. However, even in pig studies, the animals' responses to sepsis are not currently measured with the same criteria used in human clinical practice, largely because research facilities lack the personnel, equipment, and clinical facilities needed to perform the required tests on multiple animals.

To address this problem, a team of scientists from the Wyss Institute at Harvard University and Boston Children's Hospital has created a new approach for clinical monitoring designed to measure sepsis responses in pigs. Analyzing pigs based on multiple physiological signs as well as , rather than death, could help provide a more accurate preview of a sepsis drug's effect on humans before it reaches clinical trials. The research is reported in Advances in Critical Care Medicine.

Human cases of sepsis are evaluated based on a 2016 protocol called that uses Sequential Organ Failure Assessment (SOFA) scoring criteria to classify the severity of sepsis by incorporating measurements of heart, kidney, liver, lung, brain, and blood clotting function, as sepsis leads to the failure of multiple organs. Typically, animal models are evaluated by whether the animal dies as a result of illness, with the exact cause only being determined at autopsy. Inspired by the Sepsis-3 assessments used clinically, the researchers created a swine-specific Sepsis-3 (ss-Sepsis-3) protocol with swine-specific SOFA (ss-SOFA) scoring criteria so that they could evaluate sepsis in living infected pigs in a manner that mirrored human clinical assessment.

"Our system goes beyond simply measuring the effects of pathogen injection on inflammation and animal survival. Because it mimics the life-threatening organ failure that is also seen in sepsis patients, it also might provide a better prediction of how sepsis therapies will perform in humans," said Mike Super, lead senior staff scientist at the Wyss Institute and co-author of the paper.

Anna Waterhouse, a former research scientist at the Wyss Institute, collaborated on the study with a surgical team led by Boston Children's Hospital's senior veterinarian, Arthur Nedder. They infused E. coli bacteria into the blood of 18 young Yorkshire pigs and used the new protocols to evaluate the responses of their various organs in real time. Six pigs were given the bacteria while conscious, six while under anesthesia, and six did not receive E. coli but underwent the same procedures (four conscious and two anesthetized). The scientists found that increases in the total ss-SOFA scores among both conscious and anesthetized pigs were largely due to kidney and blood clotting failure, with two of the conscious animals developing .

Three of the anesthetized animals were categorized as experiencing septic shock (the highest severity level in the ss-SOFA system), based on a combination of those organ failures as well as anesthesia-induced heart failure and the lack of a fever due to lowered body temperature. These results suggest that the effects of anesthesia need to be taken into account when evaluating responses to sepsis.

Real-time monitoring of animals, whether alive or anesthetized, requires a significant investment of personnel and time, but being able to more closely replicate and study human sepsis responses could have significant benefits for drug development and testing.

"Our modified pig-specific SOFA scoring approach based on the Sepsis-3 guidelines lays the foundation for future studies that can quantify the severity of sepsis when evaluated with longer time frames, different pathogen strains, and antibiotic treatments, as well as comorbidities that typically accompany in human patients," said corresponding author and Wyss Founding Director Donald Ingber.

Explore further: Research aims to fine-tune sepsis diagnosis

More information: Modified Clinical Monitoring Assessment Criteria for MultiOrgan Failure during Bacteremia and Sepsis Progression in a Pig Model. www.scientificoajournals.org/pdf/ccm.1002.pdf

Related Stories

Research aims to fine-tune sepsis diagnosis

February 20, 2018
Work designed to improve diagnosis of one of the leading causes of death in children is under way in Brisbane, led by a University of Queensland researcher.

Gut microbes protect against sepsis—mouse study

February 22, 2018
Sepsis occurs when the body's response to the spread of bacteria or toxins to the bloodstream damages tissues and organs. The fight against sepsis could get a helping hand from a surprising source: gut bacteria. Researchers ...

Cancer drug found to offer promising results in treating sepsis in test mice

October 19, 2017
(Medical Xpress)—A combined team of researchers from China and the U.S. has found that a drug commonly used to treat lung cancer in humans offers a degree of protection against sepsis in test mice. In their paper published ...

Scientists illuminate role of staph toxins in bacterial sepsis

February 2, 2017
Staphylococcus epidermidis bacteria are a significant health concern for hospitalized infants, children and anyone with implanted medical devices. The bacteria—typically skin dwellers—can infect the bloodstream and cause ...

Quick SOFA score predicts in-hospital mortality risk

January 19, 2017
(HealthDay)—For patients with suspected infection presenting to the emergency department, the quick Sequential Organ Failure Assessment (qSOFA) score is better than systemic inflammatory response syndrome (SIRS) or severe ...

Protective association identified for asthma against sepsis

June 23, 2017
(HealthDay)—For patients with infections, those with asthma have reduced risk of sepsis, according to a letter to the editor published online May 22 in the American Journal of Respiratory and Critical Care Medicine.

Recommended for you

Drug targets for Ebola, Dengue, and Zika viruses found in lab study

December 13, 2018
No drugs are currently available to treat Ebola, Dengue, or Zika viruses, which infect millions of people every year and result in severe illness, birth defects, and even death. New research from the Gladstone Institutes ...

Faster test for Ebola shows promising results in field trials

December 13, 2018
A team of researchers with members from the U.S., Senegal and Guinea, in cooperation with Becton, Dickinson and Company (BD), has developed a faster test for the Ebola virus than those currently in use. In their paper published ...

Urbanisation and air travel leading to growing risk of pandemic

December 13, 2018
Increased arrivals by air and urbanisation are the two main factors leading to a growing vulnerability to pandemics in our cities, a University of Sydney research team has found.

Researchers discover new interactions between Ebola virus and human proteins

December 13, 2018
Several new connections have been discovered between the proteins of the Ebola virus and human host cells, a finding that provides insight on ways to prevent the deadly Ebola virus from reproducing and could lead to novel ...

Faecal transplants, 'robotic guts' and the fight against deadly gut bugs

December 13, 2018
A simple compound found in our gut could help to stop dangerous bacteria behind severe, and sometimes fatal, hospital infections.

Taking the virus out of a mosquito's bite

December 12, 2018
They approach with the telltale sign—a high-pitched whine. It's a warning that you are a mosquito's next meal. But that mosquito might carry a virus, and now the virus is in you. Now, with the help of state-of-the-art technology, ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.