Researchers grow capillaries with a neural organoid

April 10, 2018 by Bob Yirka, Medical Xpress report
There is robust penetration of the outer, more organized layers of the organoid in vitro. There is some ingrowth of blood vessels into the STEM121-positive core of the organoid (white arrow). Credit: NeuroReport (2018). DOI: 10.1097/WNR.0000000000001014

A team of researchers at UC Davis has succeeded in growing capillaries on and into a neural organoid. In their paper published in the journal NeuroReport, the group describes how they grew capillaries with the organoid and their hopes that such research will one day lead to therapies for treating brain damage in people.

Organoids are masses of cells that have been grown artificially to represent human organs. They are grown to allow scientists to perform research on reasonable facsimiles of living instead of real ones, for obvious reasons. Medical scientists also hope that someday, such research will lead to the replacement of damaged organs with new ones grown from the patient's own cells. One area of such research involves growing neural cell organoids, or mini-brains, as some have called them. They are not actually brains, of course, as they cannot think, process information or develop consciousness—at least not yet. But their brain-like qualities allow researchers to test drugs to see how they impact before actual clinical trials.

Up until recently, neural organoids had a short lifespan, mainly because of how they are kept alive—typically by bathing them in nutrient solutions. But that can only work temporarily, because the inner cells start to die. The real brain is kept alive, of course, by nutrients delivered via the bloodstream in tiny blood vessels more commonly known as capillaries. In this new effort, the researchers sought to extend the life of neural organoids by growing capillaries along with them, offering a better way to feed them. They note that a longer lifespan for neural organoids would also allow them to develop more, to grow bigger and to become more brain-like.

The team first removed brain membranes from a live human volunteer during treatment for an unrelated ailment. They then caused the cells in the membrane to become stem cells, which they programmed to mature into . Meanwhile, the team also collected endothelial cells (cells that line blood vessels) from the same patient. The were placed in a liquid which was used as a bath for the stem cells—the stem soaked in the liquid bath for three weeks. At that point, the were removed and placed into the brain of a healthy live mouse, where they were allowed to mature into a human neural celled organoid. The team reports that two weeks later, they found that had grown on and into the inner layers of the organoid, possibly paving the way for introduction of blood that would carry nutrients.

Explore further: Using organoids to understand how the brain wrinkles

More information: Missy T. Pham et al. Generation of human vascularized brain organoids, NeuroReport (2018). DOI: 10.1097/WNR.0000000000001014

Abstract
The aim of this study was to vascularize brain organoids with a patient's own endothelial cells (ECs). Induced pluripotent stem cells (iPSCs) of one UC Davis patient were grown into whole-brain organoids. Simultaneously, iPSCs from the same patient were differentiated into ECs. On day 34, the organoid was re-embedded in Matrigel with 250 000 ECs. Vascularized organoids were grown in vitro for 3–5 weeks or transplanted into immunodeficient mice on day 54, and animals were perfused on day 68. Coating of brain organoids on day 34 with ECs led to robust vascularization of the organoid after 3–5 weeks in vitro and 2 weeks in vivo. Human CD31-positive blood vessels were found inside and in-between rosettes within the center of the organoid after transplantation. Vascularization of brain organoids with a patient's own iPSC-derived ECs is technically feasible.

Related Stories

Using organoids to understand how the brain wrinkles

February 20, 2018
A team of researchers working at the Weizmann Institute of Science has found that organoids can be used to better understand how the human brain wrinkles as it develops. In their paper published in the journal Nature Physics, ...

Modular approach found to improve consistency of organoids

August 15, 2017
(Medical Xpress)—A team of researchers from the U.S. and Australia working at the Yale Stem Cell Center report that they have met with some success in improving the usefulness of organoids. In their paper published in the ...

Two teams implant human organoids into rodent brains sparking ethical debate

November 9, 2017
(Medical Xpress)—Two teams of researchers have reportedly implanted human organoids into mice and rat brains, setting off what it likely to be a heated debate about the ethical implications of such research. Statnews is ...

Patient-derived organoids may help personalize the treatment of gastrointestinal cancers

January 17, 2018
A new BJS (British Journal of Surgery) review highlights the potential of 3D organoid models derived from patient cells to help personalize therapy for individuals with gastrointestinal cancers.

Mini brains may wrinkle and fold just like ours

December 18, 2017
Flat brains growing on microscope slides may have revealed a new wrinkle in the story of how the brain folds.

A closer look at brain organoid development

March 10, 2017
How close to reality are brain organoids, and which molecular mechanisms underlie the remarkable self-organizing capacities of tissues? Researchers already have succeeded in growing so-called "cerebral organoids" in a dish ...

Recommended for you

Researchers explore new way of killing malaria in the liver

December 8, 2018
In the ongoing hunt for more effective weapons against malaria, international researchers said Thursday they are exploring a pathway that has until now been little studied—killing parasites in the liver, before the illness ...

Study may offer doctors a more effective way to treat neuroblastoma

December 7, 2018
A very large team of researchers, mostly from multiple institutions across Germany, has found what might be a better way to treat patients with neuroblastoma, a type of cancer. In their paper published in the journal Science, ...

Progress made in transplanting pig hearts into baboons

December 6, 2018
A large team of researchers from several institutions in Germany, Sweden, Switzerland and the U.S. has transplanted pig hearts into baboons and kept them alive for an extended period of time. In their paper published in the ...

'Chemo brain' caused by malfunction in three types of brain cells, study finds

December 6, 2018
More than half of cancer survivors suffer from cognitive impairment from chemotherapy that lingers for months or years after the cancer is gone. In a new study explaining the cellular mechanisms behind this condition, scientists ...

Hybrid prevalence estimation: Method to improve intervention coverage estimations

December 6, 2018
LSTM's Professor Joseph Valadez is senior author on a new study published today in the Proceedings of the National Academy of Sciences, which outlines proposals for a more accurate estimator of health data.

World's smallest wearable device warns of UV exposure, enables precision phototherapy

December 5, 2018
The world's smallest wearable, battery-free device has been developed by Northwestern Medicine and Northwestern's McCormick School of Engineering scientists to measure exposure to light across multiple wavelengths, from the ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.