Targeting neuraminidase—the 'N' in H1N1—could help prevent the flu and limit severity

April 5, 2018, University of Chicago Medical Center
Blue tetramers are the neuraminidase glycoprotein and the brown trimers are the hemagglutinin glycoprotein. Neuraminidase has long stood in the shadow of hemagglutinin, the major target of current influenza vaccine platforms. Neuraminidase should be included as a vaccine target. Credit: The Wilson lab, University of Chicago Medicine

Vaccines designed to protect people from the influenza virus tend to concentrate on hemagglutinin, one of the two prominently displayed proteins on the surface of the virus and the primary target for influenza prevention.

In the April 5, 2018, issue of the journal Cell, however, teams led by Patrick Wilson at the University of Chicago Medicine and Florian Krammer at the Icahn School of Medicine at Mt. Sinai Hospital in New York City argue that placing greater emphasis on the comparatively neglected protein, , could substantially decrease infection rates and reduce disease severity for those infected with the .

These two viral-surface glycoproteins have distinct roles. Hemagglutinin enables the virus to attach to a host's cell membranes and enter that person's . Once inside the cell, the virus makes multiple copies of itself. These copies then prepare to burst out of their hijacked cell and infect more cells.

The virus cannot get out of the cell, however, without help from the other protein. Neuraminidase facilitates egress. It enables newly formed to escape the original cell and infect nearby cells, where they multiply again, repeating the process and allowing the infection to spread rapidly throughout the body.

The Wilson and Krammer laboratories found that maintaining the structure of neuraminidase during the production of future influenza vaccines could substantially improve protection from influenza infection. Credit: Wikimedia Commons: PDB_1ivd_EBI

"Hemagglutinin activity has been the primary measure of influenza- efficacy for decades," said Wilson, the study's senior author and a professor of medicine at the University of Chicago. The current anti-flu vaccines concentrate on hemagglutinin. "But they do a poor job of stimulating the immune system to neutralize neuraminidase," Wilson said. "Neuraminidase, one of two prime targets, has been profoundly neglected. This leaves a big hole in immunity."

Interim estimates from the Centers for Disease Control and Prevention confirm the need for a more trustworthy vaccine. The U.S. Influenza Vaccine Effectiveness survey found that the vaccine's ability to protect people from influenza A or B during the period from November 2, 2017, to February 3, 2018, was a dismal 36 percent. That fell to 25 percent for the influenza A (H3N2) virus. In the previous three influenza seasons, effectiveness ranged from a low of 19 percent to a high of 48 percent.

So Wilson and colleagues focused instead on the neglected link. Neuraminidase is "highly immunogenic," he said. Infection induces nearly equal numbers of neuraminidase and hemagglutinin-reactive B cells. These cells produce the crucial antibodies that block activity of flu-related viral proteins.

But the current vaccines rarely trigger an effective response from neuraminidase-reactive B cells. "The hemagglutinin tends to maintain its structure," Wilson said, "but the neuraminidase, a more complicated, delicate four-part structure, breaks down. It sort of falls apart."

Patrick Wilson, who led the UChicago Medicine team, and study co-author Nai-Ying Zheng in a laboratory in the Knapp Center for Lupus and Immunology Research at the University of Chicago. Credit: The University of Chicago Medicine

As a result, the antibodies that should neutralize neuraminidase, locking potentially virulent viral particles inside infected cells, are much less effective. In many cases, the neuraminidase component of the vaccines triggers antibody production at levels "nearly 90-fold lower," the authors note, than antibodies aimed at hemagglutinin.

"The current vaccines rely on sub-units, small pieces of the neuraminidase protein, rather than the full target," Wilson said. "The current process of inactivating the vaccine seems to destroy the neuraminidase protein."

When the researchers tested monoclonal antibodies collected from unvaccinated mice that were infected with influenza, they found that those antibodies could provide robust protection. Even when given to mice 48 hours after infection with the virus, the neuraminidase-reactive antibodies were effective at levels comparable to the hemagglutinin-reactive , protecting the mice from a lethal influenza challenge.

"Our results demonstrate that hemagglutinin should no longer be the de-facto target in influenza vaccine development efforts," Wilson said. "We think including an improved neuraminidase component to future compositions can reduce the severity of illness and decrease the frequency of community-acquired influenza infections."

"With a robust response to neuraminidase," the authors conclude, "the degree of protection conferred might protect from any infection." It could even provide "broad-ranging protection," they suggest, "against potential pandemic strains that express N1 or N2 neuraminidases."

Explore further: Researchers discover a new way that influenza can infect cells

More information: "Influenza infection in humans induces broadly cross-reactive and protective neuraminidase-reactive antibodies," Cell (2018). DOI: 10.1016/j.cell.2018.03.030

Related Stories

Researchers discover a new way that influenza can infect cells

September 23, 2013
Scientists at Fred Hutchinson Cancer Research Center have uncovered a new mechanism by which influenza can infect cells – a finding that ultimately may have implications for immunity against the flu.

Flu infection study increases understanding of natural immunity

January 23, 2018
People with higher levels of antibodies against the stem portion of the influenza virus hemagglutinin (HA) protein have less viral shedding when they get the flu, but do not have fewer or less severe signs of illness, according ...

Lactic acid bacteria can protect against Influenza A virus, study finds

December 13, 2017
Lactic acid bacteria, commonly used as probiotics to improve digestive health, can offer protection against different subtypes of influenza A virus, resulting in reduced weight loss after virus infection and lower amounts ...

Nano-decoy lures human influenza A virus to its doom

October 25, 2016
To infect its victims, influenza A heads for the lungs, where it latches onto sialic acid on the surface of cells. So researchers created the perfect decoy: A carefully constructed spherical nanoparticle coated in sialic ...

Recommended for you

Scientists reverse aging-associated skin wrinkles and hair loss in a mouse model

July 20, 2018
Wrinkled skin and hair loss are hallmarks of aging. What if they could be reversed?

Enzyme identified as possible novel drug target for sickle cell disease, Thalassemia

July 19, 2018
Medical researchers have identified a key signaling protein that regulates hemoglobin production in red blood cells, offering a possible target for a future innovative drug to treat sickle cell disease (SCD). Experiments ...

Mice given metabolite succinate found to lose weight by turning up the heat

July 19, 2018
A team of researchers with members from institutions across the U.S. and Canada has found that giving the metabolite succinate to mice fed a high-fat diet prevented obesity. In their paper published in the journal Nature, ...

Supplement may ease the pain of sickle cell disease

July 19, 2018
(HealthDay)—An FDA-approved supplement reduces episodes of severe pain in people with sickle cell disease, a new clinical trial shows.

Scientists uncover DNA 'shield' with crucial roles in normal cell division

July 18, 2018
Scientists have made a major discovery about how cells repair broken strands of DNA that could have huge implications for the treatment of cancer.

Researchers develop novel bioengineering technique for personalized bone grafts

July 18, 2018
Scientists from the New York Stem Cell Foundation (NYSCF) Research Institute have developed a new bone engineering technique called Segmental Additive Tissue Engineering (SATE). The technique, described in a paper published ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.