Boosting the effects of vitamin D to tackle diabetes

May 10, 2018, Salk Institute
Enhanced activation of vitamin D curbs type 2 diabetes progression in animal models. Left: damaged insulin positive B cells (red) in a diabetic mouse pancreas. Right: B cells (red) were protected in a diabetic mouse pancreas treated with a combination of a vitamin D activator and BRD9 inhibitor. Credit: Salk Institute

More than 27 million people in the United States are living with type 2 diabetes, according to the Centers for Disease Control and Prevention. As the population ages and a growing percentage of people become overweight or obese, that number is expected to increase.

In a paper published May 10, 2018, in Cell, researchers from the Salk Institute report a potential new approach for treating diabetes by protecting —the cells in the pancreas that produce, store and release the hormone insulin. When beta cells become dysfunctional, the body can't make insulin to control blood sugar (glucose) and levels of glucose can rise to dangerous—even fatal—levels.

The investigators accomplished their goal by using an unexpected source: D. Vitamin D in cells and mouse models proved beneficial in treating damaged beta cells. It also provided new insights about gene regulation that could be applied to developing treatments for other diseases, including cancer.

"We know that diabetes is a disease caused by inflammation," explains senior author Ronald Evans, a Howard Hughes Medical Institute investigator and holder of Salk's March of Dimes Chair in Molecular and Developmental Biology. "In this study, we identified the vitamin D receptor as an important modulator of both inflammation and beta cell survival."

Using beta cells created from , the investigators were able to identify a compound, iBRD9, that appeared to enhance the activation of the vitamin D receptor when it was combined with vitamin D to improve the survival of beta cells. The team accomplished this by conducting a screening test to look for compounds that improved the survival of beta cells in a dish. They then tested the combination in a mouse model of diabetes and showed that it could bring glucose back to normal levels in the animals.

From left: (front row) Nanhai He, Gabriela Estepa, Ron Evans and Ruth Yu; (back row) Eiji Yoshihara, Michael Downes, Weiwei Fan and Zong Wei. Credit: Salk Institute

"This study started out by looking at the role of vitamin D in beta cells," says Zong Wei, a research associate in Salk's Gene Expression Laboratory and the study's first author. "Epidemiological studies in patients have suggested a correlation between high vitamin D concentrations in the blood and a lower risk of diabetes, but the underlying mechanism was not well understood. It's been hard to protect beta cells with the vitamin alone. We now have some ideas about how we might be able to take advantage of this connection."

The underlying process has to do with transcription—the way that genes are translated into proteins. Combining the new compound with vitamin D allowed certain protective genes to be expressed at much higher levels than they are in diseased cells.

"Activating the vitamin D receptor can trigger the anti-inflammatory function of genes to help survive under stressed conditions," says Michael Downes, a Salk senior staff scientist and co-corresponding author. "By using a screening system that we developed in the lab, we've been able to identify an important piece of that puzzle that allows for super-activation of the Vitamin D pathway."

The discovery's implications can have far-reaching implications: It identifies a basic mechanism that can be translated into drugging many different targets in the clinic.

"In this study, we looked at diabetes, but because this is an important receptor it could potentially be universal for any treatments where you need to boost the effect of vitamin D," adds Ruth Yu, a Salk staff researcher and one of the study's authors. "For example, we are especially interested in looking at it in pancreatic cancer, which is a disease that our lab already studies."

The investigators say that, although the new compound did not appear to cause any side effects in the mice, further testing is needed before clinical trials can begin.

Explore further: Beta cell-seeded implant restores insulin production in type 1 diabetes mouse model

Related Stories

Beta cell-seeded implant restores insulin production in type 1 diabetes mouse model

March 19, 2018
Researchers have successfully created a novel biomaterial that can be seeded with insulin-producing beta cells. Implantation of the beta cell-seeded biomaterial reversed diabetes in a mouse model by effectively normalizing ...

The role of vitamin A in diabetes

June 13, 2017
There has been no known link between diabetes and vitamin A - until now. A new study suggests that the vitamin improves the insulin producing β-cell´s function.

Vitamin A deficiency may be involved in type 2 diabetes

January 16, 2015
Investigators have long sought the answer to a vexing question: What are the biological mechanisms involved in the development of type 2 diabetes? A recent study from Weill Cornell Medical College researchers suggests that ...

Scientists find 'secret sauce' for personalized, functional insulin-producing cells

April 12, 2016
Salk scientists have solved a longstanding problem in the effort to create replacement cells for diabetic patients. The team uncovered a hidden energy switch that, when flipped, powers up pancreatic cells to respond to glucose, ...

Growing pancreatic stem cells for research on diabetes

November 29, 2017
A new cell culture procedure developed by A*STAR will assist the study of diabetes and facilitate better treatments. "Our discovery will enable studies of how the pancreas forms and why certain cells malfunction in diabetes," ...

Vitamin D doesn't improve glucose measures

October 5, 2016
(HealthDay)—Weekly doses of vitamin D do not improve oral glucose tolerance or markers of glycemic status among those at risk for diabetes, according to a study published online Sept. 26 in Diabetes, Obesity and Metabolism.

Recommended for you

Genomic study brings us closer to precision medicine for type 2 diabetes

September 21, 2018
Most patients diagnosed with type 2 diabetes are treated with a "one-size-fits-all" protocol that is not tailored to each person's physiology and may leave many cases inadequately managed. A new study by scientists at the ...

High gluten diet in pregnancy linked to increased risk of diabetes in children

September 19, 2018
A high gluten intake by mothers during pregnancy is associated with an increased risk of their child developing type 1 diabetes, suggests a study published by The BMJ today.

Anti-inflammatory protein promotes healthy gut bacteria to curb obesity

September 19, 2018
Scientists from the UNC School of Medicine discovered that the anti-inflammatory protein NLRP12 normally helps protect mice against obesity and insulin resistance when they are fed a high-fat diet. The researchers also reported ...

Study reveals the current rates of diagnosed type 1 and type 2 diabetes in American adults

September 18, 2018
A new study from the University of Iowa finds that type 2 diabetes remains overwhelmingly the most common type of diabetes diagnosed in American adults who have the disease.

Research reveals link between immunity, diabetes

September 14, 2018
When it comes to diet-induced obesity, your immune system is not always your friend.

BPA exposure in U.S.-approved levels may alter insulin response in non-diabetic adults

September 14, 2018
In a first study of its kind study, researchers have found that a common chemical consumers are exposed to several times a day may be altering insulin release. Results of the study, led by scientists at the University of ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.