A key switch in biological clocks

May 29, 2018, Duke-NUS Medical School
Credit: CC0 Public Domain

Just as we abide by an external time schedule to eat, sleep, and go to work, our body is similarly dictated by internal clocks. Known as circadian rhythms, these daily cycles keep us on a regular 24-hour day and are involved in numerous aspects of our well-being. When these biological clocks fail to work as they should, our bodies are out of phase with the outside world and this leads to many problems, not only sleep disorders but obesity, cancer and mental health issues as well.

We have known about for a long time, since 1729. We are learning a lot about how circadian rhythms work, and the 2017 Nobel prize for Medicine was awarded to circadian rhythms researchers.

Our circadian clocks can be misaligned by a variety of reasons. Some of us are morning larks, other night owls. Sometimes, mutations to our genes lead to the Familial Advanced Sleep Phase (FASP) condition. People with this mutation sleep and wake very early.

More worryingly, modern life is increasingly messing with our clocks. We stay awake at night with artificial lighting, often in front of glowing screens as we work late. In the morning, we are not awakened naturally but by alarm clocks. Such habits can override our .

So how do these clocks work?

These clocks are intricately regulated by complex mechanisms, the details of which scientists are teasing out. We know that our molecular circadian clocks work via biochemical feedback loops with the aptly name PERIOD (PER) protein at the center. One process essential for molecular time keeping is a common process called phosphorylation.

Phosphorylation is the addition of a phosphate group, in this case to PER. Changes in phosphorylation of PER proteins due to mutations in can result in dramatic changes to circadian periods. But one large question was: what starts the phosphorylation of PER?

Previous research has suggested that a 'priming' kinase is required to 'switch on' the FASP site, a key control point that plays an important role in regulating our biological clock. However, despite much effort, the identity of the priming kinase has yet to be discovered. Moreover, understanding of how phosphorylation of PER, a key control point, had been lacking until now.

An international team of researchers, led by Professor David Virshup in the Programme in Cancer and Stem Cell Biology, Duke-NUS Medical School, found that CK1 is the priming kinase.1 CK1 is a well-known kinase, though the discovery of this new key role is novel. The team also uncovered the mechanisms in which these proteins switch on the site. Members from the family of CK1 proteins cooperatively regulate the circadian clock. For example, while CK1D1 accelerates the circadian clock, CK1D2 slows it down.

By shining a light on this key part of how these CK1 proteins work on the circadian , we have a better understanding of what we can do when our breaks down and problems arise, and the treatments we can develop. Those of us doing shift work or suffering from jet lag look forward to the day that drugs that inhibit CK1 allow us to wake and sleep on time!

Explore further: Potassium is critical to circadian rhythms in human red blood cells

More information: Rajesh Narasimamurthy et al, CK1δ/ε protein kinase primes the PER2 circadian phosphoswitch, Proceedings of the National Academy of Sciences (2018). DOI: 10.1073/pnas.1721076115

Related Stories

Potassium is critical to circadian rhythms in human red blood cells

December 12, 2017
An innovative new study from the University of Surrey and Cambridge's MRC Laboratory of Molecular Biology, published in the prestigious journal Nature Communications, has uncovered the secrets of the circadian rhythms in ...

The ancient clock that rules our lives – and determines our health

October 5, 2017
Our lives are ruled by time; we use time to tell us what to do. But the alarm clock that wakes us in the morning or the wristwatch that tells us we are late for supper are unnatural clocks. Our biology answers to a profoundly ...

Adjusting your body clock when the time changes

November 4, 2014
As we reset our clocks and watches for daylight saving time, it's a good opportunity to think about our body clocks as well. Our bodies naturally operate on 24-hour cycles, called circadian rhythms, that respond to external ...

Recommended for you

Targeting a hunger hormone to treat obesity

October 22, 2018
About 64 per cent of Canadian adults are overweight or obese, according to Health Canada. That's a problem, because obesity promotes the emergence of chronic diseases such as type 2 diabetes, heart disease and some cancers.

Scientists in Sweden may have figured out one way acne bacteria defies treatment

October 22, 2018
Researchers in Sweden have discovered how acne-causing bacteria feed off their human hosts. The study, which was performed at KTH Royal Institute of Technology, could make it possible to find effective ways to treat severe ...

Gene plays critical role in noise-induced deafness

October 19, 2018
In experiments using mice, a team of UC San Francisco researchers has discovered a gene that plays an essential role in noise-induced deafness. Remarkably, by administering an experimental chemical—identified in a separate ...

Scientists grow functioning human neural networks in 3-D from stem cells

October 18, 2018
A team of Tufts University-led researchers has developed three-dimensional (3-D) human tissue culture models for the central nervous system that mimic structural and functional features of the brain and demonstrate neural ...

Functional engineered oesophagus could pave way for clinical trials 

October 18, 2018
The world's first functional oesophagus engineered from stem cells has been grown and successfully transplanted into mice, as part of a pioneering new study led by UCL.

New findings cast light on lymphatic system, key player in human health

October 16, 2018
Scientists at the Oklahoma Medical Research Foundation have broken new ground in understanding how the lymphatic system works, potentially opening the door for future therapies.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.