Novel techniques for three-dimensional visualization of microscopic structures in the human brain

May 8, 2018, The University of Hong Kong
A transgenic mouse dentate gyrus imaged and colored-coded to reveal the distribution of the nerve cells. Credit: The University of Hong Kong

A team of scientists from the Li Ka Shing Faculty of Medicine of The University of Hong Kong (HKU) and Imperial College London has made a breakthrough in the visualisation of human brain tissue at the microscopic level. The findings are now published in the latest issue of Nature Communications.

New techniques for visualization of human brain tissue

To understand how the works, scientists need to map how nerve cells (neurons) are wired to form circuitries in both healthy and disease states. Traditionally, this was accomplished by thinly slicing brain and tracing the cut nerve fibres over many sections. However, this approach is difficult and labour-intensive, as the neuronal circuitries span great distances in three dimensions and are tightly entangled microscopically. To avoid the sectioning of tissues, tissue clearing techniques that turn opaque tissue transparent have been developed, enabling deep, high-resolution imaging of neuronal circuitries. Although such techniques have been very effective on rodent brain tissue, only limited studies have found success with human brain tissue. The difficulties and challenges may be attributed to fundamental differences between the human and the mice brain.

To overcome these barriers, the team developed a new tissue clearing solution, OPTIClear. OPTIClear selectively adjusts the optical properties of tissue without damaging or changing their structural components. Combined with fluorescent staining and other tissue processing methods, the team created a simple, yet versatile tool for the study of microscopic structures in the human brain. Nerve cells, glial cells and blood vessels were visualized in exquisite detail, with their 3-D relationship determined. For example, the team performed 3-D morphological analysis on human brainstem dopaminergic neurons in the millimetre scale, and imaged more than 3,000 large neurons in the human basal forebrain in just five days, normally, such procedures take at least three weeks. These neurons have been implicated in neurological and psychiatric diseases such as dementia and depression; the promising results suggest that this novel method is applicable to future research on these conditions. More remarkably, OPTIClear can also be applied in both archived (>30 years) and clinical specimens.

The team hopes that this simple method can catalyse further scientific development. By allowing scientists to study human tissue quicker and better, OPTIClear could potentially speed up the elucidation of circuitry mechanisms in a multitude of brain diseases. Professor Wutian Wu, Honorary Professor, School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, HKU, co-supervisor of the study, commented, "We hope that a better understanding of the connections and circuitries of the brain will help uncover the pathologies that underlie the common degenerative diseases of the brain, such as Alzheimer's and Parkinson's ." Regarding future developments of the project, Mr. Lai Hei-ming, lead researcher of the study and 6th year HKU medical student, said, "In principle, this method is also applicable to other human organs and clinical specimens. We hope that this technique can also be used in studying other diseases, and eventually help us to unravel the mysteries of the human body."

Explore further: New tissue technique gives stunning 3-D insights into the human brain

Related Stories

New tissue technique gives stunning 3-D insights into the human brain

March 15, 2018
Imperial researchers have helped develop a breakthrough imaging technique which reveals the ultra-fine structure of the brain in unprecedented detail.

Interconnected cells-in-a-dish let researchers study brain disease

May 3, 2018
By creating multiple types of neurons from stem cells and observing how they interact, Salk scientists have developed a new way to study the connections between brain cells in the lab. Using the technique, which generates ...

New method increases life span of donated brain tissue

March 9, 2018
Researchers at Lund University in Sweden have developed a method that enables them to use donated brain tissue from people with epilepsy for 48 hours. Previously, the researchers only had 12 hours to test new treatments before ...

New procedure enables cultivation of human brain sections in the petri dish

October 19, 2017
Researchers at the University of Tübingen have become the first to keep human brain tissue alive outside the body for several weeks. The researchers, headed by Dr. Niklas Schwarz, Dr. Henner Koch and Dr. Thomas Wuttke at ...

Ethics debate overdue in human brain research: experts

April 25, 2018
What if human brain tissue implanted into a pig transferred some of the donor's self-awareness and memories?

Overlapping mechanisms in HIV cognitive disorders and Alzheimer's disease

April 9, 2018
A protein involved in Alzheimer's disease (AD) may be a promising target for treating neurological disorders in human immunodeficiency virus (HIV) patients, suggests a study published in JNeurosci of rat neurons and brain ...

Recommended for you

Aggression neurons identified

May 25, 2018
High activity in a relatively poorly studied group of brain cells can be linked to aggressive behaviour in mice, a new study from Karolinska Institutet in Sweden shows. Using optogenetic techniques, the researchers were able ...

The brain's frontal lobe could be involved in chronic pain, according to research

May 25, 2018
A University of Toronto scientist has discovered the brain's frontal lobe is involved in pain transmission to the spine. If his findings in animals bear out in people, the discovery could lead to a new class of non-addictive ...

Doctors fail to flag concussion patients for critical follow-up

May 25, 2018
As evidence builds of more long-term effects linked to concussion, a nationwide study led by scientists at UCSF and the University of Southern California has found that more than half of the patients seen at top-level trauma ...

Bursts of brain activity linked to memory reactivation

May 24, 2018
Leading theories propose that sleep presents an opportune time for important, new memories to become stabilized. And it's long been known which brain waves are produced during sleep. But in a new study, researchers set out ...

Study suggests brainwave link between disparate disorders

May 24, 2018
A brainwave abnormality could be a common link between Parkinson's disease, neuropathic pain, tinnitus and depression—a link that authors of a new study suggest could lead to treatment for all four conditions.

Researchers define molecular basis to explain link between a pregnant mother's nutrition and infant growth

May 24, 2018
For years, pregnant mothers have questioned their nutritional habits: "Will eating more cause my baby to be overweight?" Or, "I'm eating for two, so it won't hurt to have an extra serving, right?"

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.