There is more going on in myotonic dystrophy type 1 than just alternative splicing

June 26, 2018 by Ana María Rodríguez, Ph.d., Baylor College of Medicine
Mouse models of human genetic conditions are valuable tools to better understand and potentially treat human diseases. Courtesy of the National Human Genome Research Institute/Ernesto del Aguila III. Credit: Baylor College of Medicine

Myotonic dystrophy type 1 (DM1) is the most common adult-onset muscular dystrophy that affects multiple organ systems. People with this condition develop progressive muscle wasting and weakness in their lower legs, hands, neck and face. Their muscles feel stiff and tight, causing them to be slow to relax certain muscles and therefore have difficulty releasing the hand from a handshake or a doorknob. In addition, people with this condition may have fatigue, muscle pain, difficulty swallowing, cataracts, irregularities in their heartbeat and respiratory complications. In his laboratory at Baylor College of Medicine, Dr. Thomas A. Cooper is leading the way to better understand this rare but devastating condition.

"Muscle wasting in this , which happens over decades, is responsible for the death of 60 percent of the patients," said Cooper, who is professor of pathology and immunology, of molecular and cellular biology and of molecular physiology and biophysics at Baylor College of Medicine. "In this study we wanted to develop a novel of the disease that would allow us to study wasting in more detail."

DM1 is caused by a striking expansion of three-letter repeats (CTG) in the DMPK gene. While the unaffected population carries 5 to 37 repeats, people with the condition have 50 to 3000 repeats. The RNA transcripts containing the CTG repeat expansion accumulate in the cell nucleus. This disturbs the normal cellular processing and distribution of molecules, such as muscleblind-like (MBNL) proteins, and induces up-regulation of others, such as the CELF1 protein. These alterations result in abnormal alternative splicing, which is thought to play a central role in the development of DM1. However, how these changes triggered by the expansion of the CTG repeat lead to muscle wasting still is not completely understood.

"We think that the current animal models of DM1 do not provide researchers with a complete and practical tool to investigate the mechanisms involved in muscle loss," said Dr. Ginny Morriss, postdoctoral associate in the Cooper lab and the first author of this work. "This disease has many different components. Current animal models have some of the molecular components, but the physiological components, what's happening to the tissue, are mostly missing. We wanted to develop a of DM1 that clearly showed muscle loss and to implement a strategy that would allow us to study the pathways involved in muscle wasting."

A mouse model of reversible DM1

The researchers genetically engineered a skeletal muscle-specific mouse model of DM1 that allowed them to induce the development of the disease at will. When induced, the mice expressed 960 CUG repeats of a particular region of the human DMPK gene and the RNA transcripts containing the CUG repeat expansion accumulated inside the cell nucleus triggering the chain of events that resulted in progressive muscle wasting. When the researchers 'turned off' the expression of the 960 CUG repeats, RNA accumulation and muscle loss progressively reverted.

In this model, the researchers saw alternative splicing that was consistent with findings in previous studies that correlated it with muscle weakness. They also validated signaling pathway changes that had been previously found by others. Importantly, they saw signaling pathway changes that had not been described before. These new changes stratified with how severe was in the mice, showing a clear association between specific signaling pathways and .

"We validated the upregulation of the activity of protein AMPK-alpha, which had been shown previously by another group in another model. AMPK-alpha regulates the way the muscles metabolize and function," Morriss said. "One of the new changes we discovered in our model was the dramatic reduction of signaling activity mediated by PDGFR-beta, which is involved in energy metabolism pathways."

In addition, Cooper, Morriss and their colleagues found a connection with the human condition. They analyzed human tissue samples from patients and unaffected individuals and found in the patients the same signaling pathway changes they had found in their mouse model.

"The field has been focusing on alternative splicing. But, one of the things our findings tell us is that, although many of the characteristics of the disease result from alternative splicing defects, in addition there are other mechanisms at play and therefore other potential targets to treat this disease. There is more going on here than just alternative splicing," said Cooper, who also is the S. Donald Greenberg and R. Clarence and Irene H. Fulbright Professor and a member of the Dan L Duncan Comprehensive Cancer Center at Baylor.

"Now we have a mouse model in which we can test mechanisms involved in the disease. Because we made our model reversible, we can use it to test hypotheses about how the repeats cause the characteristics of the disease. We can systematically test each one of those hypothesis independently in our model blocking each signaling event specifically and determining how much that affects the disease. We can in this way determine how much each of the disease components, signaling pathways and , contribute to the disease," Cooper said.

Explore further: Researchers reveal abnormal myokine signaling in congenital myotonic dystrophy

More information: Ginny R Morriss et al, Mechanisms of skeletal muscle wasting in a mouse model for myotonic dystrophy type 1, Human Molecular Genetics (2018). DOI: 10.1093/hmg/ddy192

Related Stories

Researchers reveal abnormal myokine signaling in congenital myotonic dystrophy

December 12, 2017
Myotonic dystrophy (DM) is the most common form of genetic muscular dystrophy that begins in adulthood. DM is characterized by progressive muscle wasting and weakness. People with this disorder often have prolonged muscle ...

Study identifies potential drug targets for muscular dystrophy treatments

January 9, 2017
Myotonic dystrophy type I (MD1) is a common form of muscular dystrophy associated with muscle wasting, weakness, and myotonia. These symptoms are linked to the accumulation of toxic gene transcripts in muscle cells that result ...

Change in protein production essential to muscle function

August 14, 2017
Researchers at Baylor College of Medicine have shed light on the process that guides the maturation of newborn muscles into adult, fully functional organs. In mice, they determined that a group of genes involved in calcium ...

Aberrant splicing saps the strength of 'slow' muscle fibers

July 29, 2013
When you sprint, the "fast" muscle fibers give you that winning kick. In a marathon or just day-to-day activity, however, the "slow," or type 1 fibers, keep you going for hours.

Study uncovers roles of proteins essential for mouse muscle function; potential link to myotonic dystrophy

November 16, 2016
Myotonic dystrophy, the second most common cause of muscular dystrophy, and numerous other muscle disorders affect tens of thousands of individuals in the U.S.. Paving the way toward a better understanding of these conditions, ...

New target may slow disease progression in Duchenne muscular dystrophy

September 12, 2016
Duchenne muscular dystrophy is a chronic disease causing severe muscle degeneration that is ultimately fatal. As the disease progresses, muscle precursor cells lose the ability to create new musclar tissue, leading to faster ...

Recommended for you

Why some human genes are more popular with researchers than others

September 18, 2018
Historical bias is a key reason why biomedical researchers continue to study the same 10 percent of all human genes while ignoring many genes known to play roles in disease, according to a study publishing September 18 in ...

Class of neurological disorders share 3-D genome folding pattern, study finds

September 18, 2018
In a class of roughly 30 neurological disorders that includes ALS, Huntington's Disease and Fragile X Syndrome, the relevant mutant gene features sections of repeating base pair sequences known as short tandem repeats, or ...

Researchers resolve decades-old mystery about the most commonly mutated gene in cancer

September 18, 2018
The most commonly mutated gene in cancer has tantalized scientists for decades about the message of its mutations. Although mutations can occur at more than 1,100 sites within the TP53 gene, they arise with greatest frequency ...

Study of one million people leads to world's biggest advance in blood pressure genetics

September 17, 2018
Over 500 new gene regions that influence people's blood pressure have been discovered in the largest global genetic study of blood pressure to date, led by Queen Mary University of London and Imperial College London.

Genetic mutations thwart scientific efforts to fully predict our future

September 17, 2018
Ever since the decoding of the human genome in 2003, genetic research has been focused heavily on understanding genes so that they could be read like tea leaves to predict an individual's future and, perhaps, help them stave ...

Gene therapy via skin protects mice from lethal cocaine doses

September 17, 2018
There are no approved medications to treat either cocaine addiction or overdose. Frequent users tend to become less and less sensitive to the drug, leading to stronger or more frequent doses. The typical result is addiction. ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.