Powerful new approach helps understand molecular alterations in neurological disease

June 20, 2018, Baylor College of Medicine
Dr. Juan Botas. Credit: Baylor College of Medicine

Neurological diseases are typically associated with a multitude of molecular changes. But out of these thousands of changes in gene expression, which ones are actually driving the disease? To answer this question, a team of scientists has developed a high-throughput, multi-pronged approach that integrates laboratory experiments, data from published literature and network analysis of large datasets. When the scientists applied their new approach to Huntington's disease, they uncovered the functional significance of various molecular changes. This information not only provided a better understanding of the disease but also suggested new directions for developing therapeutic interventions. The study appears in the journal Cell Systems.

"In this study we looked at from numerous studies in Huntington's disease," said corresponding author Dr. Juan Botas, professor of molecular and human genetics and molecular and cellular biology at Baylor College of Medicine. "Previous studies had been conducted in different mouse models or different patient samples, sometimes with differing results. But this is actually a good thing; by comparing the that were affected repeatedly in different models, we were able to narrow down the set of genes to study from a few thousand to a few hundred."

Botas and his colleagues selected 312 genetic changes for a more detailed study. They then developed a setup that would allow them to test the effect of not a few, but many in a relatively short time. That's when the fruit fly model came in.

The fruit fly is key

The researchers worked with a fruit fly model of Huntington's disease they had previously developed by expressing, only in fruit fly neurons, the mutated that causes the condition in people. The flies carrying the human mutated gene are healthy when they are young, but at their midlife (2 weeks of age) they start to show signs of neurodegeneration that manifest as motor impairments that become progressively worse as the flies get older.

"We measured the severity of the flies' motor impairments in a 'climbing assay': tap a test tube with a dozen flies in it, and healthy flies will climb upward," Botas said. "Flies whose neurons are sick can't do this test very well. The benefit of fruit flies as an experimental model is that they're easy to study in this way, and their short lives mean disease manifests in a matter of days rather than months or years, as it would in a mammalian model. In addition, the neurons of these present with the characteristic clumping of huntingtin that also is present in people with the condition."

In this fruit fly , the researchers tested the 312 changes in gene expression they had selected. They reproduced and/or tried to counteract these changes, one by one, and determined their effect on the progression of the disease in the climbing test and on the level of huntingtin protein accumulated inside fruit fly neurons.

This strategy revealed interesting results, some of them totally unexpected. The researchers found that changes in the expression of genes involved in either inflammation or in building the architecture of cells drove the disease forward, while changes in genes involved in calcium signaling and homeostasis counteracted the disease. Interestingly, they discovered that that aggravated the disease mediated their effect by making the huntingtin protein more stable inside neurons, which led to more protein accumulation and neurotoxicity. Counteracting the accumulation of huntingtin improved the health of the Huntington disease flies.

"One of the findings that surprised us was that changes in the expression of genes involved in either inflammation or the cell's architectural organization increased the accumulation of huntingtin inside neurons," Botas said. "We were not expecting that those genes were involved in protein stability or turnover, but now we are encouraged to look for ways to improve the condition by interfering with those proteins to reduce the levels of huntingtin accumulation and neurotoxicity."

Although the researchers applied their novel strategy to study changes in Huntington's , their approach also can be applied to investigate molecular alterations in many other .

Explore further: Novel regulator inhibits toxic protein aggregates in Huntington's disease

More information: Cell Systems (2018). DOI: 10.1016/j.cels.2018.05.010

Related Stories

Novel regulator inhibits toxic protein aggregates in Huntington's disease

April 23, 2015
Huntington's disease is a neurodegenerative disorder characterized by huntingtin protein aggregates in a patient's brain, but how these aggregates form is not well understood. In a study published online today in Genome Research, ...

Huntington's disease gene dispensable in adult mice

March 7, 2016
Adult mice don't need the gene that, when mutated in humans, causes the inherited neurodegenerative disorder Huntington's disease.

Research team develops new genetic tool to expand library of fruit flies and accelerate biomedical discovery

April 5, 2018
For more than 100 years, the humble fruit fly has been used to understand fundamental biological processes and has been a crucial tool for rapid preclinical gene discovery for myriads of human diseases. Now, an exciting study ...

Researchers find chemical 'switches' for neurodegenerative diseases

November 27, 2012
By using a model, researchers at the University of Montreal have identified and "switched off" a chemical chain that causes neurodegenerative diseases such as Huntington's disease, amyotrophic lateral sclerosis and dementia. ...

Scientists develop therapeutic protein, protect nerve cells from Huntington's Disease

September 13, 2016
A new scientific study reveals one way to stop proteins from triggering an energy failure inside nerve cells during Huntington's disease. Huntington's disease is an inherited genetic disorder caused by mutations in the gene ...

Recommended for you

Cell study reveals how head injuries lead to serious brain diseases

November 16, 2018
UCLA biologists have discovered how head injuries adversely affect individual cells and genes that can lead to serious brain disorders. The life scientists provide the first cell "atlas" of the hippocampus—the part of the ...

Newborn babies' brain responses to being touched on the face measured for the first time

November 16, 2018
A newborn baby's brain responds to being touched on the face, according to new research co-led by UCL.

Playing high school football changes the teenage brain

November 16, 2018
A single season of high school football may be enough to cause microscopic changes in the structure of the brain, according to a new study by researchers at the University of California, Berkeley, Duke University and the ...

Precision neuroengineering enables reproduction of complex brain-like functions in vitro

November 14, 2018
One of the most important and surprising traits of the brain is its ability to dynamically reconfigure the connections to process and respond properly to stimuli. Researchers from Tohoku University (Sendai, Japan) and the ...

New brain imaging research shows that when we expect something to hurt it does, even if the stimulus isn't so painful

November 14, 2018
Expect a shot to hurt and it probably will, even if the needle poke isn't really so painful. Brace for a second shot and you'll likely flinch again, even though—second time around—you should know better.

A 15-minute scan could help diagnose brain damage in newborns

November 14, 2018
A 15-minute scan could help diagnose brain damage in babies up to two years earlier than current methods.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.