Without 'yoga and chardonnay' leukemia stem cells are stressed to death

June 14, 2018, CU Anschutz Medical Campus
Without 'yoga and chardonnay' leukemia stem cells are stressed to death
Craig T. Jordan, Ph.D., and colleagues show that blocking the stress-relief of mitophagy kills leukemia stem cells without harming healthy blood stem cells. Credit: University of Colorado Cancer Center

Change is stressful. The change that a healthy blood stem cell undergoes to become a leukemia stem cell (LSC) is no exception—think of healthy blood stem cells as young professionals and the transformation into an LSC as having a child. Now these chronically frazzled LSCs need a special stress-relief technique above and beyond what they used to require. And the LSC equivalent of yoga and chardonnay is a process called mitophagy. LSCs desperately need mitophagy. Without it, they die.

A University of Colorado Cancer Center study published today in the journal Cell Stem Cell identifies an essential switch that LSCs use to activate mitophagy. Think of AMPK like a babysitter—without it, there is no yoga or chardonnay. When researchers turned off AMPK, it was as if they had cancelled the babysitter and there was no mitophagy. Thus, without AMPK allowing the stress release of mitophagy, LSCs were very literally stressed to death. This would be bad for young parents of small children. But it points to a potential sea change in the way doctors treat .

"The standard of care for acute myeloid leukemia hasn't changed since the 1960s. This study, and the concept of targeting in general, could help us offer new treatments for this most common form of ," says Craig T. Jordan, Ph.D., investigator at University of Colorado Cancer Center, division chief of the Division of Hematology and the Nancy Carroll Allen Professor of Hematology at the University of Colorado School of Medicine.

As you could probably guess from this article's central analogy, it all comes down to energy. In your , make energy. Mitochondria do something a little different in LSCs, but it is specifically the mitochondria that are stressed when a healthy stem cell transforms into an LSC (maybe think of mitochondria like your pocketbook?). What does an LSC do with these mitochondria that are stressed to the point of damage? It eats them—thus the term "mitophagy".

"in various situations, mitochondria may need to be destroyed. Really, it's the mitochondria saying, 'I need to eat myself.' Typically, the reason they need to eat themselves is when they're damaged," Jordan says.

Work in the Jordan lab by postdoctoral fellow and paper first author Shanshan Pei, Ph.D., shows there is another genetic player here, namely the gene FIS1. It directly turns on mitophagy. But FIS1 is also very difficult to manipulate. Luckily, AMPK turns on FIS1, which turns on mitophagy, and AMPK is much easier to mess with. And turning off AMPK turns off FIS1, which turns off mitophagy.

"Leukemia stem cells require AMPK for their survival, but normal hematopoetic cells can do without it. The reason this study is so important is that so far nobody's come up with a good way to kill leukemia stem cells while sparing normal blood-forming cells. If we can translate this concept to patients, the potential for improved therapy is very exciting," says Jordan. In fact, Jordan points out the CU program is unique in its focus on laboratory and clinical research designed to specifically target .

"Over the past five years I've worked closely with Dr. Daniel Pollyea, the clinical director of our leukemia services, to create a bench-to-bedside program in which we only evaluate therapies with the potential to kill the heart of leukemic disease—the leukemia stem cell," Jordan says.

"We're not aware of anyone else with this same focus," says Pollyea. "In just the past couple of years, we're beginning to see how targeting leukemia stem cells can have a huge impact on patient outcomes. It's a truly exciting time for the field and our patients."

Additional studies describing drugs targeting stem cells have been submitted and are under review at other academic journals.

Explore further: As leukemia evolves, stem cells hold keys to newer therapies

Related Stories

As leukemia evolves, stem cells hold keys to newer therapies

August 30, 2016
A recent study by University of Rochester Medical Center researchers proves why leukemia is so difficult to treat and suggests that the current approach to drug development should be adjusted to target a broader range of ...

Team finds a potentially better way to treat liver cancer

October 12, 2017
A Keck School of Medicine of USC research team has identified how cancer stem cells survive. This finding may one day lead to new therapies for liver cancer, one of the few cancers in the United States with an incidence rate ...

Cancer stem cells in 'robbers cave' may explain poor prognosis for obese patients

July 20, 2016
Across many cancer types, obese patients fare worse than leaner patients. Now a University of Colorado Cancer Center study published in the journal Cell Stem Cell offers a compelling hypothesis why: researchers found that ...

Bolstering fat cells offers potential new leukemia treatment

October 16, 2017
Killing cancer cells indirectly by powering up fat cells in the bone marrow could help acute myeloid leukemia patients, according to a new study from McMaster University.

Recommended for you

Healthy diets linked to better outcomes in colorectal cancer

October 20, 2018
Colorectal cancer patients who followed healthy diets had a lower risk of death from colorectal cancer and all causes, even those who improved their diets after being diagnosed, according to a new American Cancer Society ...

Why some cancers affect only young women

October 19, 2018
Among several forms of pancreatic cancer, one of them specifically affects women, often young. How is this possible, even though the pancreas is an organ with little exposure to sex hormones? This pancreatic cancer, known ...

Scientists to improve cancer treatment effectiveness

October 19, 2018
Together with researchers from the University of Nantes and the University of Reims Champagne-Ardenne in France, experts from the National Research Nuclear University MEPhI have recently developed a quantum dot-based microarray ...

Mutant cells colonize our tissues over our lifetime

October 18, 2018
By the time we reach middle age, more than half of the oesophagus in healthy people has been taken over by cells carrying mutations in cancer genes, scientists have uncovered. By studying normal oesophagus tissue, scientists ...

Study involving hundreds of patient samples may reveal new treatment options of leukemia

October 17, 2018
After more than five years and 672 patient samples, an OHSU research team has published the largest cancer dataset of its kind for a form of leukemia. The study, "Functional Genomic Landscape of Acute Myeloid Leukemia", published ...

A 150-year-old drug might improve radiation therapy for cancer

October 17, 2018
A drug first identified 150 years ago and used as a smooth-muscle relaxant might make tumors more sensitive to radiation therapy, according to a recent study led by researchers at The Ohio State University Comprehensive Cancer ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.