Alternative splicing is crucial to muscle mass maintenance

July 10, 2018, Baylor College of Medicine
Skeletal muscle tissue. Credit: University of Michigan Medical School

Despite the importance that changes in muscle mass have in aging, overall body metabolism and in chronic disease, we still don't fully understand the mechanisms that contribute to the maintenance of adult muscle mass.

"A number of cell signaling and metabolic pathways have been studied regarding their involvement in sustaining adult , but not alternative splicing," said Dr. Thomas Cooper, professor of pathology & immunology, of molecular and cellular biology and of molecular physiology and biophysics at Baylor College of Medicine.

Alternative splicing is a cellular mechanism that allows cells to produce many different proteins from a single gene. A gene can be visualized as a short string of 'beads' or exons. Each bead codes for a different piece of the final protein. Alternative splicing allows the cell to make different proteins by combining the 'beads' in different ways.

The researchers and other groups previously determined that alternative splicing regulators Rbfox1 and Rbfox2 were required for muscle development and function, but Cooper's group hypothesized that the two proteins worked together, and their combined role in adult muscle had not been studied before.

"To determine whether alternative splicing played a role in adult muscle maintenance, we disrupted the process in adult mice by knocking out the genes Rbfox1 and Rbfox2 only in skeletal muscles. Then, we looked at the effect this disruption had in muscles in the animals' limbs," said Dr. Ravi Singh, instructor of pathology & immunology at Baylor College of Medicine.

The critical role of alternative splicing

"We observed that the knockout mice rapidly lost about half of their skeletal muscle mass within four weeks," Singh said. "Two weeks after knocking out the genes Rbfox1 and Rbfox2, hundreds of other genes altered their expression and other their , including the capn3 gene, which switched splicing to produce an active form of a protease, an enzyme that degrades proteins."

"Taking all our observations together, we attributed the loss of muscle mass to an increase in degradation of muscle protein rather than a reduction of synthesis," said Cooper, who also is the S. Donald Greenberg and R. Clarence and Irene H. Fulbright Professor and a member of the Dan L Duncan Comprehensive Cancer Center at Baylor. "The results indicate that the Rbfox splicing regulators, which are highly conserved from the worm C. elegans to humans, are essential for maintaining skeletal muscle mass in adult mice."

"Our contribution has implications for studies on the role of muscle mass in metabolism and on mass loss in aging and chronic disease," Singh said.

Read all the details of this study in the journal Cell Reports.

Explore further: Change in protein production essential to muscle function

More information: Ravi K. Singh et al, Rbfox-Splicing Factors Maintain Skeletal Muscle Mass by Regulating Calpain3 and Proteostasis, Cell Reports (2018). DOI: 10.1016/j.celrep.2018.06.017

Related Stories

Change in protein production essential to muscle function

August 14, 2017
Researchers at Baylor College of Medicine have shed light on the process that guides the maturation of newborn muscles into adult, fully functional organs. In mice, they determined that a group of genes involved in calcium ...

There is more going on in myotonic dystrophy type 1 than just alternative splicing

June 26, 2018
Myotonic dystrophy type 1 (DM1) is the most common adult-onset muscular dystrophy that affects multiple organ systems. People with this condition develop progressive muscle wasting and weakness in their lower legs, hands, ...

Study uncovers roles of proteins essential for mouse muscle function; potential link to myotonic dystrophy

November 16, 2016
Myotonic dystrophy, the second most common cause of muscular dystrophy, and numerous other muscle disorders affect tens of thousands of individuals in the U.S.. Paving the way toward a better understanding of these conditions, ...

Aberrant splicing saps the strength of 'slow' muscle fibers

July 29, 2013
When you sprint, the "fast" muscle fibers give you that winning kick. In a marathon or just day-to-day activity, however, the "slow," or type 1 fibers, keep you going for hours.

Protein expression gets the heart pumping

April 22, 2014
Most people think the development of the heart only happens in the womb, however the days and weeks following birth are full of cellular changes that play a role in the structure and function of the heart. Using mouse models, ...

New study uncovers mechanisms underlying how diabetes damages the heart

May 27, 2016
Cardiac complications are the number one cause of death among diabetics. Now a team of scientists has uncovered a molecular mechanism involved in a common form of heart damage found in people with diabetes.

Recommended for you

Gut hormone and brown fat interact to tell the brain it's time to stop eating

November 15, 2018
Researchers from Germany and Finland have shown that so-called "brown fat" interacts with the gut hormone secretin in mice to relay nutritional signals about fullness to the brain during a meal. The study, appearing November ...

Brain, muscle cells found lurking in kidney organoids grown in lab

November 15, 2018
Scientists hoping to develop better treatments for kidney disease have turned their attention to growing clusters of kidney cells in the lab. One day, so-called organoids—grown from human stem cells—may help repair damaged ...

Researchers discover important connection between cells in the liver

November 15, 2018
University of Minnesota Medical School researchers have made a discovery which could lead to a new way of thinking about how disease pathogenesis in the liver is regulated, which is important for understanding the condition ...

How the Tasmanian devil inspired researchers to create 'safe cell' therapies

November 15, 2018
A contagious facial cancer that has ravaged Tasmanian devils in southern Australia isn't the first place one would look to find the key to advancing cell therapies in humans.

Precision neuroengineering enables reproduction of complex brain-like functions in vitro

November 14, 2018
One of the most important and surprising traits of the brain is its ability to dynamically reconfigure the connections to process and respond properly to stimuli. Researchers from Tohoku University (Sendai, Japan) and the ...

Gene mutation found to cause macrocephaly and intellectual deficits

November 13, 2018
The absence of one copy of a single gene in the brain causes a rare, as-yet-unnamed neurological disorder, according to new research that builds on decades of work by a University at Buffalo biochemist and his colleagues.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.