Alternative splicing is crucial to muscle mass maintenance

July 10, 2018, Baylor College of Medicine
Skeletal muscle tissue. Credit: University of Michigan Medical School

Despite the importance that changes in muscle mass have in aging, overall body metabolism and in chronic disease, we still don't fully understand the mechanisms that contribute to the maintenance of adult muscle mass.

"A number of cell signaling and metabolic pathways have been studied regarding their involvement in sustaining adult , but not alternative splicing," said Dr. Thomas Cooper, professor of pathology & immunology, of molecular and cellular biology and of molecular physiology and biophysics at Baylor College of Medicine.

Alternative splicing is a cellular mechanism that allows cells to produce many different proteins from a single gene. A gene can be visualized as a short string of 'beads' or exons. Each bead codes for a different piece of the final protein. Alternative splicing allows the cell to make different proteins by combining the 'beads' in different ways.

The researchers and other groups previously determined that alternative splicing regulators Rbfox1 and Rbfox2 were required for muscle development and function, but Cooper's group hypothesized that the two proteins worked together, and their combined role in adult muscle had not been studied before.

"To determine whether alternative splicing played a role in adult muscle maintenance, we disrupted the process in adult mice by knocking out the genes Rbfox1 and Rbfox2 only in skeletal muscles. Then, we looked at the effect this disruption had in muscles in the animals' limbs," said Dr. Ravi Singh, instructor of pathology & immunology at Baylor College of Medicine.

The critical role of alternative splicing

"We observed that the knockout mice rapidly lost about half of their skeletal muscle mass within four weeks," Singh said. "Two weeks after knocking out the genes Rbfox1 and Rbfox2, hundreds of other genes altered their expression and other their , including the capn3 gene, which switched splicing to produce an active form of a protease, an enzyme that degrades proteins."

"Taking all our observations together, we attributed the loss of muscle mass to an increase in degradation of muscle protein rather than a reduction of synthesis," said Cooper, who also is the S. Donald Greenberg and R. Clarence and Irene H. Fulbright Professor and a member of the Dan L Duncan Comprehensive Cancer Center at Baylor. "The results indicate that the Rbfox splicing regulators, which are highly conserved from the worm C. elegans to humans, are essential for maintaining skeletal muscle mass in adult mice."

"Our contribution has implications for studies on the role of muscle mass in metabolism and on mass loss in aging and chronic disease," Singh said.

Read all the details of this study in the journal Cell Reports.

Explore further: Change in protein production essential to muscle function

More information: Ravi K. Singh et al, Rbfox-Splicing Factors Maintain Skeletal Muscle Mass by Regulating Calpain3 and Proteostasis, Cell Reports (2018). DOI: 10.1016/j.celrep.2018.06.017

Related Stories

Change in protein production essential to muscle function

August 14, 2017
Researchers at Baylor College of Medicine have shed light on the process that guides the maturation of newborn muscles into adult, fully functional organs. In mice, they determined that a group of genes involved in calcium ...

There is more going on in myotonic dystrophy type 1 than just alternative splicing

June 26, 2018
Myotonic dystrophy type 1 (DM1) is the most common adult-onset muscular dystrophy that affects multiple organ systems. People with this condition develop progressive muscle wasting and weakness in their lower legs, hands, ...

Study uncovers roles of proteins essential for mouse muscle function; potential link to myotonic dystrophy

November 16, 2016
Myotonic dystrophy, the second most common cause of muscular dystrophy, and numerous other muscle disorders affect tens of thousands of individuals in the U.S.. Paving the way toward a better understanding of these conditions, ...

Aberrant splicing saps the strength of 'slow' muscle fibers

July 29, 2013
When you sprint, the "fast" muscle fibers give you that winning kick. In a marathon or just day-to-day activity, however, the "slow," or type 1 fibers, keep you going for hours.

Protein expression gets the heart pumping

April 22, 2014
Most people think the development of the heart only happens in the womb, however the days and weeks following birth are full of cellular changes that play a role in the structure and function of the heart. Using mouse models, ...

New study uncovers mechanisms underlying how diabetes damages the heart

May 27, 2016
Cardiac complications are the number one cause of death among diabetics. Now a team of scientists has uncovered a molecular mechanism involved in a common form of heart damage found in people with diabetes.

Recommended for you

Enzyme identified as possible novel drug target for sickle cell disease, Thalassemia

July 19, 2018
Medical researchers have identified a key signaling protein that regulates hemoglobin production in red blood cells, offering a possible target for a future innovative drug to treat sickle cell disease (SCD). Experiments ...

Mice given metabolite succinate found to lose weight by turning up the heat

July 19, 2018
A team of researchers with members from institutions across the U.S. and Canada has found that giving the metabolite succinate to mice fed a high-fat diet prevented obesity. In their paper published in the journal Nature, ...

Supplement may ease the pain of sickle cell disease

July 19, 2018
(HealthDay)—An FDA-approved supplement reduces episodes of severe pain in people with sickle cell disease, a new clinical trial shows.

Scientists uncover DNA 'shield' with crucial roles in normal cell division

July 18, 2018
Scientists have made a major discovery about how cells repair broken strands of DNA that could have huge implications for the treatment of cancer.

Researchers develop novel bioengineering technique for personalized bone grafts

July 18, 2018
Scientists from the New York Stem Cell Foundation (NYSCF) Research Institute have developed a new bone engineering technique called Segmental Additive Tissue Engineering (SATE). The technique, described in a paper published ...

Researchers report protein kinase as the switch controlling obesity and diabetes

July 18, 2018
One of the research lines targeting the worldwide obesity epidemic is the manipulation of brown adipose tissue, a 'good' type of fat that burns lipids to maintain an appropriate body temperature. Researchers at the Centro ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.