Analysis of prostate tumors reveals clues to cancer's aggressiveness

July 19, 2018 by Julia Evangelou Strait, Washington University School of Medicine
Micrograph showing prostatic acinar adenocarcinoma (the most common form of prostate cancer) Credit: Wikipedia

Using genetic sequencing, scientists have revealed the complete DNA makeup of more than 100 aggressive prostate tumors, pinpointing important genetic errors these deadly tumors have in common. The study lays the foundation for finding new ways to treat prostate cancer, particularly for the most aggressive forms of the disease.

The multicenter study, which examined the genomes of tumors that grew and spread quickly, was led by Washington University School of Medicine in St. Louis and the University of California, San Francisco. The research appears July 19 in the journal Cell.

"This study could aid the search for better therapies to treat aggressive prostate cancer," said co-first author Christopher A. Maher, Ph.D., an associate professor of medicine and an assistant director at The McDonnell Genome Institute at Washington University School of Medicine. "More immediately, the new information could help doctors find ways to identify which patients may develop aggressive tumors, and help guide their treatment decisions."

More than 160,000 cases of prostate cancer are diagnosed each year in the U.S. While some 80 percent of prostate cancer patients have tumors that are slow-growing and have effective treatment options, about 20 percent of such patients develop the most aggressive forms of the disease—the focus of the new study.

Most genetic studies of prostate cancer have focused on parts of the genome that control what proteins a manufactures. Proteins act like the machinery of cells. When they function properly, proteins perform cellular tasks required for good health. But when proteins don't work properly, disease, including cancer, can result.

Still, genes that make proteins represent only 1 to 2 percent of the entire genome. The new analysis is the first large-scale study of the whole genomes—all of the DNA, including all of each tumor's genes—of metastatic , and reveals that many of these tumors have problems in the sections of the genome that tell protein-coding genes what to do.

"Protein-coding genes are important, but when you focus only on them you can miss mutations in regions of the genome that regulate those genes," Maher said.

The researchers were surprised to find that about 80 percent of the studied had the same genetic alterations in a region of the genome that controls the receptor, Maher said. This genetic error dialed up levels of androgen receptor on . Such bind to male hormones such as testosterone and drive tumor growth.

"This was one of the most surprising findings," said Maher, also a research member of Siteman Cancer Center at Barnes-Jewish Hospital and Washington University School of Medicine. "We saw too many repeated copies of DNA in this region of the . In some of these patients, the androgen receptor looks totally normal. But they have too much androgen receptor because the receptor's regulatory region is dialed up, which would be missed by the protein-coding focused sequencing studies."

A common treatment for , beyond the traditional options of surgery, chemotherapy and radiation, involves androgen deprivation therapy, in which drugs are used to block testosterone from binding to the androgen receptor. Since tumors are often hormone-driven cancers, blocking testosterone from binding this receptor slows tumor growth.

All the men in this study had tumors that developed resistance to androgen deprivation therapy, meaning the androgen receptor is always switched on, fueling the tumor, whether testosterone is present or not. Patients in this situation have no effective treatment options. The researchers showed that more than 80 percent of these patients had mutations that help explain the aggressiveness of their cancers; these genetic errors activated the .

The researchers, including co-first author Ha X. Dang, Ph.D., a senior scientist at Washington University, also found important roles for other genes known to be involved in , including those that help with DNA repair, such as TP53 and BRCA2.

Explore further: Genome's dark matter offers clues to major challenge in prostate cancer

More information: Quigley DA, et al. Genomic hallmarks and structural variation in metastatic prostate cancer. Cell. July 19, 2018.

Related Stories

Genome's dark matter offers clues to major challenge in prostate cancer

May 28, 2018
The dark matter of the human genome may shed light on how the hormone androgen impacts prostate cancer.

Researchers identify RNA molecules that regulate action of male hormone in prostate cancer

July 19, 2018
In most cases of prostate cancer, tumor cell growth is stimulated by the action of male hormones, or androgens, such as testosterone and dihydrotestosterone (DHT). For this to happen, these hormones have to bind to androgen ...

A new method for prostate cancer imaging

July 21, 2016
Prostate cancer is one of the most common cancers in men. Tumor growth is critically regulated by the androgen receptor, and treatment strategies to lower androgens, such as testosterone, are a mainstay of clinical treatment. ...

Compound shows promise as next-generation prostate cancer therapy

August 8, 2016
In the search for new ways to attack recurrent prostate cancer, researchers at Duke Health report that a novel compound appears to have a unique way of blocking testosterone from fueling the tumors in mice.

Prostate cells undergo 'reprogramming' to form tumors, study finds

October 12, 2015
Scientists have gained a key insight into how prostate tumors get their start - not by rewriting the normal DNA code, but by reprogramming the master regulator of genes in prostate cells to drive malignant growth.

Study finds marker of aggressive prostate cancer

August 3, 2016
The level of a specific molecule present in prostate tumors is an indicator of whether the cancer is aggressive and likely to spread, according to new research from Washington University School of Medicine in St. Louis.

Recommended for you

Week 34 of pregnancy reduces breast cancer risk: study

October 23, 2018
Women's bodies undergo a "striking" change during a specific week of pregnancy that can significantly reduce their risk of developing breast cancer later in life, scientists said Tuesday.

New kind of compound shows early promise against prostate cancer

October 23, 2018
A new type of molecule blocks the action of genes that drive the growth of therapy-resistant prostate cancer, a new study finds.

New combination treatment flips the switch on melanoma cells

October 23, 2018
Think of the protein BH3 like a finger that turns off a cancer cell survival switch. The problem is that most cancer cells have found ways to remove this "finger—commonly, by breaking the action of a gene called p53 that ...

Desperate & duped? GoFundMe means big bucks for dubious care

October 23, 2018
People seeking dubious, potentially harmful treatment for cancer and other ailments raised nearly $7 million over two years from crowdfunding sites, a study found.

Marker found for condition that causes numerous tumors

October 23, 2018
UT Southwestern researchers have made a major advance in uncovering the biology of how thousands of disfiguring skin tumors occur in patients troubled by a genetic disorder called neurofibromatosis type 1 (NF1). This scientific ...

Urban and rural rates of childhood cancer survival the same, study finds

October 23, 2018
Childhood and adolescent cancer survival in the United States does not vary by rural/urban residence at the time of diagnosis, finds a new study from the Brown School at Washington University in St. Louis.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.