Mapping the genetic controllers in heart disease

July 10, 2018, eLife
Credit: CC0 Public Domain

Researchers have developed a 3-D map of the gene interactions that play a key role in cardiovascular disease, a study in eLife reports.

The map will help researchers identify the most important genes to focus on for the development of new treatments for heart attacks, heart failure and .

More than 500 genetic variants have been linked with increased risk of . But most are located in so-called 'non-coding' parts of the genome, which means they don't code for a particular protein molecule. This makes it challenging for researchers to understand the importance of these genetic variants because, until now, there has been no way to study their function.

"The strongest genetic signatures associated with complex human diseases, including many cardiovascular diseases, are actually located outside of genes, scattered throughout the vast 98% of the genome that is 'non-coding,'" explains lead author Lindsey Montefiori, Graduate Student at the University of Chicago, US. "What we think is happening is that these mutations affect the function of the 'switches' of genes, called enhancers, which determine where, when and to what level each gene should be turned on."

These enhancers can be located anywhere in the genome and are often a considerable distance from the genes they control. But because DNA forms loops inside cells, the enhancers can physically connect with the genes they control and fine-tune their activity.

It has recently become possible to map these enhancers to their target genes using a technique called high-resolution promoter capture, which uses the enhancer region as 'bait' to catch its target gene. The team added an extra step to this, so that they only 'captured' a region of the genome that contains coding genes. This enabled them to map each mutation to its target gene in human heart cells and examine the precise wiring of all the potential enhancers controlling each gene.

They looked at more than 10,000 genetic mutations that have been linked to cardiovascular diseases and found that 1,999 of them make physical contact with 347 in heart cells. When they studied the genes further, they found that these were well known for their roles in cardiac function.

Because the three diseases analysed involve different processes, the team next studied the interactions between enhancers with genes in other cell types which may be involved in cardiovascular . Here they found that mutations linked to heart attacks captured a target gene involved in cholesterol regulation, and mutations in heart failure pulled out a gene known to be important in coronary artery disease.

"Incomplete understanding of long-range gene regulation is a major roadblock in translating genetic variants into understanding of disease biology," says senior author Marcelo Nóbrega, Professor of Human Genetics at the University of Chicago. "Our 3-D map of enhancer-gene interactions in human cells will help guide investigators to the most likely causal underlying increased , and could lead to new treatment and prevention strategies."

Explore further: New tool enables scientists to interpret 'dark matter' DNA

More information: Lindsey E Montefiori et al, A promoter interaction map for cardiovascular disease genetics, eLife (2018). DOI: 10.7554/eLife.35788

Related Stories

New tool enables scientists to interpret 'dark matter' DNA

April 4, 2016
Scientists at the Gladstone Institutes have invented a new way to read and interpret the human genome. The computational method, called TargetFinder, can predict where non-coding DNA—the DNA that does not code for proteins—interacts ...

Human stem cell research shows new genetic pathway controls the heart beat

June 26, 2018
New research into human heart development has shed light on the way heart muscle cells contract.

Brain study reveals insights into genetic basis of autism

July 13, 2015
UNSW Australia scientists have discovered a link between autism and genetic changes in some segments of DNA that are responsible for switching on genes in the brain.

'Mysterious' non-protein-coding RNAs play important roles in gene expression

January 12, 2017
In cells, DNA is transcribed into RNAs that provide the molecular recipe for cells to make proteins. Most of the genome is transcribed into RNA, but only a small proportion of RNAs are actually from the protein-coding regions ...

DNA study could shed light on how genetic faults trigger disease

April 24, 2015
A new technique that identifies how genes are controlled could help scientists spot errors in the genetic code which trigger disease, a study suggests.

Recommended for you

Gene mutation found to cause macrocephaly and intellectual deficits

November 13, 2018
The absence of one copy of a single gene in the brain causes a rare, as-yet-unnamed neurological disorder, according to new research that builds on decades of work by a University at Buffalo biochemist and his colleagues.

Mutations, CRISPR, and the biology behind movement disorders

November 12, 2018
Scientists at the RIKEN Center for Brain Science (CBS) in Japan have discovered how mutations related to a group of movement disorders produce their effects. Published in Proceedings of the National Academy of Sciences, the ...

Decrease in specific gene 'silencing' molecules linked with pediatric brain tumors

November 12, 2018
Experimenting with lab-grown brain cancer cells, Johns Hopkins Medicine researchers have added to evidence that a shortage of specific tiny molecules that silence certain genes is linked to the development and growth of pediatric ...

Recessive genes explain only small fraction of undiagnosed developmental disorders

November 8, 2018
The Deciphering Developmental Disorders study has discovered that only a small fraction of rare, undiagnosed developmental disorders in the British Isles are caused by recessive genes. The study by researchers from the Wellcome ...

A look at how colds and chronic disease affect DNA expression

November 8, 2018
We're all born with a DNA sequence that encodes (in the form of genes) the very traits that make us, us—eye color, height, and even personality. We think of those genes as unchanging, but in reality, the way they are expressed, ...

Mutant protein tackles DNA guardian to promote cancer development

November 7, 2018
Melbourne scientists have discovered how tumour development is driven by mutations in the most important gene in preventing cancer, p53.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.