Study raises doubts on a previous theory of Parkinson's disease

July 6, 2018, University of Basel
Cross section of an alpha-synuclein fibril. Left: 3D reconstruction of the fibril, showing two interacting protein molecules. Right: atomic model of the fibril structure. Credit: Universität Basel

Parkinson's disease was first described by a British doctor more than 200 years ago. The exact causes of this neurodegenerative disease are still unknown. In a study recently published in eLife, a team of researchers led by Prof. Henning Stahlberg from the Biozentrum of the University of Basel has now questioned the previous understanding of this disease.

The arms and legs tremble, the muscles become weaker and the movements slower − these are typical symptoms that many Parkinson's patients suffer. More than 6 million people are affected worldwide. In these patients, the in the brain slowly die off. The resulting lack of this neurotransmitter impairs motor function and often also affects the cognitive abilities.

Questionable: Protein fibrils cause Parkinson's disease

It has been assumed that the alpha-synuclein is one of the trigger factors. This protein can clump together and small needles, so-called fibrils, which accumulate and deposit as Lewy bodies in the nerve cells. These toxic fibrils damage the affected brain cells. A team of scientists led by Prof. Henning Stahlberg from the Biozentrum of the University of Basel, in collaboration with researchers from Hoffmann-La Roche Ltd. and the ETH Zurich, have now artificially generated an alpha-synuclein fibril in the test tube. They have been able to visualize for the first time its three-dimensional structure with atomic resolution. "Contrary to our expectations, the results seem to raise more questions than they can hope to answer," says Stahlberg.

It is important to know that in some congenital forms of Parkinson's , affected persons carry genetic defects in the alpha-synuclein gene. These mutations, it is suspected, eventually cause the protein to fold incorrectly, thus forming dangerous fibrils. "However, our 3-D structure reveals that a mutated alpha-synuclein protein should not be able to form these type of fibrils," says Stahlberg. "Because of their location, most of these mutations would rather hinder the formation of the fibril structure that we have found." In brief, if the fibril structure causes Parkinson's disease, the genetic defect would have to protect against the disease. But this is not the case. So, it could be possible that a different type of fibril or another form of the protein triggers the disease in these patients.

More investigations are now needed to understand this fibril . What are the effects of the alpha-synuclein mutations? Do they lead to distinct forms of protein aggregates? What is the role of the fibrils for the , and why do these cells die? To date, the exact physiological function of is still not known. Since only the symptoms of this neurodegenerative disease can be alleviated with the current medications, new concepts are urgently needed.

Explore further: Scientists show that a key Parkinson's biomarker can be identified in the retina

More information: Ricardo Guerrero-Ferreira et al. Cryo-EM structure of alpha-synuclein fibrils, eLife (2018). DOI: 10.7554/eLife.36402

Related Stories

Scientists show that a key Parkinson's biomarker can be identified in the retina

June 8, 2018
A study involving scientists from the University of Alicante and the United States notes that the accumulation of a protein known as alpha-synuclein in the retina is a key Parkinson's biomarker that could help detect the ...

Calcium may play a role in the development of Parkinson's disease

February 19, 2018
Researchers have found that excess levels of calcium in brain cells may lead to the formation of toxic clusters that are the hallmark of Parkinson's disease.

Scientists unravel molecular mechanisms of Parkinson's disease

June 12, 2018
Detailed brain cell analysis has helped researchers uncover new mechanisms thought to underlie Parkinson's disease.

A stronger twist to cytotoxic amyloid fibrils

October 24, 2017
Researchers from Amsterdam and Enschede have for the first time performed a structural comparison of two types of amyloid fibrils that have been associated with Parkinson's disease. Using a combination of experimental methods ...

Study uncovers cause of cell death in Parkinson's disease

February 26, 2018
A University of Guelph researcher has discovered one of the factors behind nerve cell death in Parkinson's disease, unlocking the potential for treatment to slow the progression of this fatal neurodegenerative disorder.

Parkinson-related protein is 'tunable'

May 18, 2018
Fibrils of the protein alpha-synuclein, that plays a role in Parkinson's disease, form a stiffer and stronger network in water, when temperature is increased. Researchers of the University of Twente show that this has to ...

Recommended for you

Genomic dark matter activity connects Parkinson's and psychiatric diseases

September 20, 2018
Dopamine neurons are located in the midbrain, but their tendril-like axons can branch far into the higher cortical areas, influencing how we move and how we feel. New genetic evidence has revealed that these specialized cells ...

Gene therapy shown to remove core component of Parkinson's disease

September 14, 2018
An international team led by Rush researcher Jeffrey Kordower, Ph.D., has moved a step closer to developing a treatment to clear brain cells of a protein that is an integral cause of Parkinson's disease. The team published ...

ADHD may increase risk of Parkinson's disease and similar disorders

September 12, 2018
While about 11 percent of children (4-17 years old) nationwide have been diagnosed with attention-deficit hyperactivity disorder (ADHD), the long-term health effects of having ADHD and of common ADHD medications remains understudied. ...

New high-throughput screening study may open up for future Parkinson's disease therapy

September 11, 2018
Parkinson's disease (PD) is the most common movement disorder in the world. PD patients suffer from shaking, rigidity, slowness of movement and difficulty with walking. It is a neurodegenerative disease caused by the loss ...

Marmosets serve as an effective model for non-motor symptoms of Parkinson's disease

September 5, 2018
Small, New World monkeys called marmosets can mimic the sleep disturbances, changes in circadian rhythm, and cognitive impairment people with Parkinson's disease develop, according to a new study by scientists at Texas Biomedical ...

Novel brain network linked to chronic pain in Parkinson's disease

August 28, 2018
Scientists have revealed a novel brain network that links pain in Parkinson's disease (PD) to a specific region of the brain, according to a report in the journal eLife.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.