Rogue molecules provoke out-of-control scar tissue, strangle organs

July 12, 2018, Northwestern University

Normal scar tissue forms to heal an internal wound and quietly retreats when the job is done. But in many common diseases—kidney, liver and lung fibrosis—the scar tissue goes rogue and strangles vital organs. These diseases are largely untreatable and ultimately fatal.

A new Northwestern Medicine study has newly identified a trigger of some fibrotic diseases and an experimental compound to treat it.

Fibrosis—a progressive scarring and hardening of internal organs—is estimated to cause 35 to 40 percent of deaths in the world. Fibrotic diseases include diabetic kidney , , hepatitis C, and nonalcoholic fatty , which may lead to fibrosis of the liver, the leading cause of liver transplant.

In one subset of human fibrosis cells, scientists discovered a delinquent gang of molecules that continually shouted at an immune receptor—the antennae on the cell—to produce tissue instead of quieting down and allowing the to go back to sleep.

Scientists collaborated with a University of Colorado researcher who used crystallography and computer modeling to predict a molecule that could block the receptor that leads to the uncontrolled scarring. When they tested the molecule, T53, in three different mouse models of fibrosis, the abnormality was significantly reversed.

"Our study opens a new door into fibrosis by looking at it as an aberrant innate immune response and suggesting a novel approach to treat it," said senior author Dr. John Varga, director of the Northwestern Scleroderma Program and the John and Nancy Hughes Distinguished Professor of Rheumatology at Northwestern University Feinberg School of Medicine.

The paper will be published July 12 in the Journal of Clinical Investigation Insight.

"The leading cause of liver failure in western world is obesity and that's because of ," Varga said. "In the U.S., many of these diseases are lifestyle or age dependent. As we get fatter or older, they get worse."

Most fibrotic disease likely begins as normal repair of an injury, scientists said. "But if the immune system produces too much of an initial scar, it can't go back to normal," Varga said. "You have an unhealed scar that keeps growing and can wipe out the entire organ."

Not everyone's fibrosis is caused by the same abnormality, Varga said. If the compound, T53, is eventually developed into an approved drug, it would be targeted to patients with the specific genetic signature identified in the study.

"There is an emerging direction for treating fibrosis with precision medicine," said first author Swati Bhattacharyya, research associate professor of medicine in rheumatology and scientific director of the Scleroderma Research Laboratory at Feinberg. "Some people live with fibrotic disease for 30 years while others die in two years. We need to identify the rapid progressors from the slow progressors. That's where precision medicine becomes really critical."

"The results of this study are encouraging," Varga said. "We are not saying this compound is ready to be a drug. It's an initial compound that would need to be developed and tweaked. It would need significant funding to go to the next step."

Varga has spent more than a decade researching the cause and treatment of scleroderma, a type of fibrosis that simultaneously affects multiple organs. He directs the Northwestern Scleroderma Program, a clinical and research effort that follows 1,500 patients with scleroderma.

Explore further: New clues on tissue scarring in scleroderma

Related Stories

New clues on tissue scarring in scleroderma

April 18, 2014
A discovery by Northwestern Medicine scientists could lead to potential new treatments for breaking the cycle of tissue scarring in people with scleroderma.

Researchers implicate well-known protein in fibrosis

November 20, 2012
An international multi-disciplinary research team led by Northwestern Medicine scientists has uncovered a new role for the protein toll-like receptor 4 (TLR4) in the development of tissue fibrosis, or scarring.

Cancer drug may also work for scleroderma

September 22, 2011
A drug used to treat cancer may also be effective in diseases that cause scarring of the internal organs or skin, such as pulmonary fibrosis or scleroderma.

Study identifies gene expression patterns associated with fatty liver disease

June 25, 2018
A fatty liver disease known as NASH—non-alcoholic steatohepatitis—is the nation's major cause of chronic liver disease, and is projected to become the most common indicator for liver transplants.

Blocking the molecular source of idiopathic pulmonary fibrosis

May 8, 2018
Idiopathic pulmonary fibrosis (IPF) is one of the most challenging and frustrating diseases that pulmonologists face.

Recommended for you

New inflammation inhibitor discovered

November 16, 2018
A multidisciplinary team of researchers led from Karolinska Institutet in Sweden have developed an anti-inflammatory drug molecule with a new mechanism of action. By inhibiting a certain protein, the researchers were able ...

Gut hormone and brown fat interact to tell the brain it's time to stop eating

November 15, 2018
Researchers from Germany and Finland have shown that so-called "brown fat" interacts with the gut hormone secretin in mice to relay nutritional signals about fullness to the brain during a meal. The study, appearing November ...

Brain, muscle cells found lurking in kidney organoids grown in lab

November 15, 2018
Scientists hoping to develop better treatments for kidney disease have turned their attention to growing clusters of kidney cells in the lab. One day, so-called organoids—grown from human stem cells—may help repair damaged ...

How the Tasmanian devil inspired researchers to create 'safe cell' therapies

November 15, 2018
A contagious facial cancer that has ravaged Tasmanian devils in southern Australia isn't the first place one would look to find the key to advancing cell therapies in humans.

Researchers discover important connection between cells in the liver

November 15, 2018
University of Minnesota Medical School researchers have made a discovery which could lead to a new way of thinking about how disease pathogenesis in the liver is regulated, which is important for understanding the condition ...

Precision neuroengineering enables reproduction of complex brain-like functions in vitro

November 14, 2018
One of the most important and surprising traits of the brain is its ability to dynamically reconfigure the connections to process and respond properly to stimuli. Researchers from Tohoku University (Sendai, Japan) and the ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.