Detailed atlas of the nervous system

August 10, 2018, Karolinska Institutet
Credit: CC0 Public Domain

Researchers at Karolinska Institutet have created a systematic and detailed map of the cell types of the mouse nervous system. The map, which can provide new clues about the origin of neurological diseases, is presented in the journal Cell. The researchers will now use the same methods to map out the human brain on a detailed level.

The nervous consists of hundreds, perhaps thousands, of different neurons, but also , supporting and cells that constitute vessels and membranes. Our knowledge of these cell types mainly stems from microscopy, which provides information about the shape of cells and can detect certain proteins, and from electrophysiology, where cells are distinguished based on their electrical properties. However, these methods are limited, and there is currently no systematic atlas of the various cell types that make up the mammalian nervous system.

In recent years, Sten Linnarson's research group, and others, have developed methods to map cell types of the brain more systematically in much greater detail than ever before, by measuring gene activity in individual cells.

"You can compare it to the difference between a medieval map and a satellite image: thousands of details that were previously invisible become visible with the use of these new techniques, and the entire map becomes more reliable, explains Sten Linnarson, professor at the Department of Medical Biochemistry and Biophysics at Karolinska Institute.

Largest study of the architecture of the mammalian nervous system to date

His research group now publishes the largest study of the architecture and composition of the mammalian nervous system to date, using the mouse as a model system. The researchers identified 265 different types of cells, and found that neurons had the greatest diversity with over 200 different types.

"What surprised us most was that we discovered several different types of astrocytes that were specialised in different parts of the brain. This suggests that astrocytes have specific functions in different parts of the brain, and that they play more of a key role in the functions of the brain than previously understood," says Sten Linnarson.

The knowledge of the cell types of the brain can be used to understand the origin of different diseases. Roughly one third of all arise during embryonic development. In the past fifteen years a large number of genetic studies have identified the genes that contribute to diseases such as schizophrenia, multiple sclerosis, autism, Alzheimer's and Parkinson's disease. However, diseases originate from a specific type of cells, in a specific location and at a specific time depending on where and when the relevant genes are active.

Atlas of the nervous system gives clues as to how the disease occurs

With the help of our new atlas of the nervous system, researchers are now able to place disease-causing genes in specific , which provides us with clues as to how the disease occurs. In the long run this might contribute to the development of new drugs or other therapies, says Sten Linnarson.

The mapping of the mouse nervous system is an important first step in a larger project where researchers are now mapping the by using the same methods.

Explore further: Atlas of brain blood vessels provides fresh clues to brain diseases

More information: Amit Zeisel et al. Molecular architecture of the mouse nervous system, Cell (2018). DOI: 10.1101/294918

Related Stories

Atlas of brain blood vessels provides fresh clues to brain diseases

February 14, 2018
Diseases of the brain vasculature are some of the most common causes of death in the West, but knowledge of brain blood vessels is limited. Now, researchers from Uppsala University and Karolinska Institutet in Sweden have ...

New stem cell model can be used to test treatments for a rare nervous system disorder

August 2, 2018
A City of Hope researcher has developed a stem cell model to assess possible treatments for a rare nervous system disorder that is in the same disease group as Alzheimer's disease, Parkinson's disease and amyotrophic lateral ...

The same characteristics can be acquired differently when it comes to neurons

June 14, 2018
Distinct molecular mechanisms can generate the same features in different neurons, a team of scientists has discovered. Its findings, which appear in the journal Cell, enhance our understanding of brain cell development.

Cell types underlying schizophrenia identified

May 22, 2018
Scientists at Karolinska Institutet in Sweden and University of North Carolina have identified the cell types underlying schizophrenia in a new study published in Nature Genetics. The findings offer a roadmap for the development ...

Allen Institute for Brain Science database release nearly doubles mouse brain cell data

June 21, 2018
The Allen Institute for Brain Science today announced the release of new data, tools to analyze those data and a new web-based 3-D viewer to explore anatomy and connections in the mouse brain, the Allen Brain Explorer. Today's ...

'Second brain' neurons keep colon moving

May 29, 2018
Millions of neurons in the gastrointestinal tract coordinate their activity to generate the muscle contractions that propel waste through the last leg of the digestive system, according to a study of isolated mouse colons ...

Recommended for you

How does brain structure influence performance on language tasks?

October 17, 2018
The architecture of each person's brain is unique, and differences may influence how quickly people can complete various cognitive tasks.

Regulating microglial activity may reduce inflammation in neurodegenerative diseases

October 17, 2018
A group of Massachusetts General Hospital (MGH) investigators is proposing that targeting immune checkpoints—molecules that regulate the activity of the immune system—in immune cells called microglia could reduce the ...

New imaging tool captures how sound moves through the chinchilla ear

October 17, 2018
Researchers have developed a new device that can be used to visualize how sound-induced vibrations travel through the ear. The technology is providing new insight into how the ear receives and processes sound waves and, with ...

Sensory perception is not a one-way street

October 17, 2018
When we interact with the world, such as when we reach out to touch an object, the brain actively changes incoming sensory signals based on anticipation. This so-called 'sensory gating' has now been investigated by neuroscientists ...

Environmental factors may trigger onset of multiple sclerosis

October 16, 2018
A new Tel Aviv University study finds that certain environmental conditions may precipitate structural changes that take place in myelin sheaths in the onset of multiple sclerosis (MS). Myelin sheaths are the "insulating ...

Study points to possible new therapy for hearing loss

October 15, 2018
Researchers have taken an important step toward what may become a new approach to restore hearing loss. In a new study, out today in the European Journal of Neuroscience, scientists have been able to regrow the sensory hair ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.