Epigenetic reprogramming of human hearts found in congestive heart failure

August 9, 2018 by Jeff Hansen, University of Alabama at Birmingham
Adam Wende and Mark Pepin. Credit: UAB

Congestive heart failure is a terminal disease that affects nearly 6 million Americans. Yet its management is limited to symptomatic treatments because the causal mechanisms of congestive heart failure—including its most common form, ischemic cardiomyopathy—are not known. Ischemic cardiomyopathy is the result of restricted blood flow in coronary arteries, as occurs during a heart attack, which starves the heart muscle of oxygen.

Researchers at the University of Alabama at Birmingham have now described an underlying mechanism that reprograms the hearts of patients with ischemic , a process that differs from patients with other forms of failure, collectively known as dilated (non-ischemic) cardiomyopathies. This points the way toward future personalized care for ischemic cardiomyopathy.

The study used heart tissue samples collected at UAB during surgeries to implant small mechanical pumps alongside the hearts of patients with end-stage that assist in the pumping of blood. As a routine part of this procedure, a small piece of heart tissue is excised and ultimately discarded as medical waste. The current study acquired these samples from the left ventricles of five ischemic cardiomyopathy patients and six non-ischemic cardiomyopathy patients, all men between ages 49 and 70.

The research team, led by Adam Wende, Ph.D., assistant professor in the UAB Department of Pathology, found that epigenetic changes in ischemic cardiomyopathy hearts likely reprogram the heart's metabolism and alter cellular remodeling in the heart. Epigenetics is a field that describes molecular modifications known to alter the activity of genes without changing their DNA sequence.

One well-established epigenetic change is the addition or removal of methyl groups to the cytosine bases of DNA. Generally, hyper-methylation is associated with reduction of , and conversely, hypo-methylation correlates with increased gene expression.

Wende and colleagues found an epigenetic signature in the heart of patients with ischemic cardiomyopathy that differed from the non-ischemic hearts. Furthermore, this signature was found to reflect a long-known metabolic change in ischemic cardiomyopathy, where the heart's preference of metabolic fuel switches from using oxygen to produce energy in cells, as healthy hearts do, to an anaerobic metabolism that does not need oxygen. This anaerobic metabolic preference is seen in fetal hearts; however, after birth, the baby's heart quickly changes to oxidative metabolism.

"Altogether, we believe that encode a so-called 'metabolic plasticity' in failing hearts, the reversal of which may repair the ischemic and failing heart," Wende said.

The researchers found that increased DNA methylation correlated with reduced expression of genes involved in oxidative metabolism. The transcription factor KLF15 is an upstream regulator of metabolic gene expression, which the researchers found is suppressed by the epigenetic regulator EZH2. Conversely, the researchers also found hypo-methylation of anaerobic glycolytic metabolic genes.

This contribution by EZH2 offers a new molecular target for further mechanistic studies that may aid precision-based heart disease therapies. Of note, co-author Sooryanarayana Varambally, who has spent over 15 years studying this protein, has already made progress using small-molecular inhibitors to regulate EZH2 to treat various cancers.

The Wende-led study, now published in Nature - Laboratory Investigation, employed a wide array of bioinformatics tools. First author Mark Pepin used publicly available programs to create a fully automated computational pipeline, which is provided as an online supplement to the paper. This protocol, written in the R programming language, allowed the investigators to both analyze their multi-Omics datasets and compare their findings to those of animal-based studies and public data repositories. "Supplying the coding scripts," Wende said, "is our way of demonstrating the rigor and reproducibility that should be expected of any bioinformatics study."

Pepin is a sixth-year M.D.-Ph.D. student at UAB and is currently completing the Ph.D. portion of his training in the Medical Scientist Training Program.

The UAB team also performed cell culture experiments showing repression of KLF15 after EZH2 over-expression in rat cardiomyoblasts, and they demonstrated that EZH2 over-expression depended on EZH2's having an intact SET catalytic domain.

Explore further: Identification of a gene signature associated with dilated cardiomyopathy

More information: Mark E. Pepin et al, Genome-wide DNA methylation encodes cardiac transcriptional reprogramming in human ischemic heart failure, Laboratory Investigation (2018). DOI: 10.1038/s41374-018-0104-x

Related Stories

Identification of a gene signature associated with dilated cardiomyopathy

May 5, 2016
Dilated cardiomyopathy (DCM) is a progressive thinning of heart muscle that commonly results in heart failure. DCM is a known secondary complication of conditions such as alcohol abuse and infection and is also an inherited ...

Risk of heart failure up for rheumatoid arthritis patients

March 14, 2017
(HealthDay)—Patients with rheumatoid arthritis (RA) have increased risk of heart failure, according to a study published in the March 14 issue of the Journal of the American College of Cardiology.

Rapid improvement of dilated cardiomyopathy with anakinra

July 31, 2018
(HealthDay)—In a report published online July 31 in the Annals of Internal Medicine, doctors describe the case of a patient with dilated cardiomyopathy who experienced rapid clinical improvements with use of anakinra, the ...

Childhood cancer survivors have higher risk of deadly heart disease in pregnancy

May 27, 2018
Girls who survive cancer have a higher risk of developing a deadly heart disease when pregnant later in life, according to a study presented today at Heart Failure 2018 and the World Congress on Acute Heart Failure, a European ...

Good transplant outcomes in hypertrophic cardiomyopathy

August 17, 2012
(HealthDay) -- Post-heart transplant survival does not differ significantly between patients with hypertrophic cardiomyopathy (HC) and those with other types of heart disease, according to a study published in the Aug. 15 ...

Heart muscle disease patients benefit from defibrillator

September 4, 2017
Some heart disease patients who are treated with cardiac resynchronisation therapy (CRT) would live longer and have fewer hospital admissions if they also received a defibrillator, concludes a team of researchers led by Aston ...

Recommended for you

Chagas disease, caused by a parasite, has spread outside of Latin America and carries a high risk of heart disease

August 20, 2018
Chagas disease, caused by infection with a parasite called Trypanosoma cruzi (T cruzi), causes chronic heart disease in about one third of those infected. Over the past 40 years, Chagas disease has spread to areas where it ...

Gout could increase heart disease risk

August 17, 2018
Having a type of inflammatory arthritis called gout may worsen heart-related outcomes for people being treated for coronary artery disease, according to new research.

Stroke patients treated at a teaching hospital are less likely to be readmitted

August 17, 2018
Stroke patients appear to receive better care at teaching hospitals with less of a chance of landing back in a hospital during the early stages of recovery, according to new research from The University of Texas Health Science ...

Cardiovascular disease related to type 2 diabetes can be reduced significantly

August 16, 2018
Properly composed treatment and refraining from cigarette consumption can significantly reduce the risk of cardiovascular disease resulting from type 2 diabetes, according to a study published in the New England Journal of ...

Genomic autopsy can help solve unexplained cardiac death

August 15, 2018
Molecular autopsies can reveal genetic risk factors in young people who unexpectedly die, but proper interpretation of the results can be challenging, according to a recent study published in Circulation.

Neonatal pig hearts can heal from heart attack

August 15, 2018
While pigs still cannot fly, researchers have discovered that the hearts of newborn piglets do have one remarkable ability. They can almost completely heal themselves after experimental heart attacks.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.