Researchers find estrogen receptor gene fusions are a cause of breast cancer metastasis and lethal drug resistance

August 8, 2018, Baylor College of Medicine
Three-dimensional culture of human breast cancer cells, with DNA stained blue and a protein in the cell surface membrane stained green. Image created in 2014 by Tom Misteli, Ph.D., and Karen Meaburn, Ph.D. at the NIH IRP.

Estrogen receptor positive (ER+) breast cancer is the most common type of breast cancer, but resistance to therapy is common and eventual development of metastatic disease is a leading cause of death. In new research published in Cell Reports, researchers from Baylor College of Medicine and Washington University in St. Louis identify estrogen receptor alpha gene (ESR1) translocation events that drive not only therapeutic resistance, but also trigger ER+ breast cancer cells to metastasize.

"Breast is not generally thought to be a disease driven by chromosomal translocations, when two separate genes break in two and then the ends find each other to create a chimera, or fusion, protein that is encoded by the front half of one gene and the back half of another," said Jonathan Lei, graduate student in translational biology and molecular medicine at Baylor and first author on the paper. "However, we detected through RNA-sequencing the presence of ESR1 fusion transcripts in ER+ breast cancer, but we weren't sure how they contributed to disease progression."

The research team studied ESR1 fusions identified in both treatment-naive primary breast tumors, or tumors that have not yet undergone treatment, as well as in late-stage, endocrine therapy-resistant, metastatic ER+ breast cancer patients. >From the metastatic patients, the researchers found two different ESR1 fusion events that generated very active fusion proteins and went on to study their biological properties in detail.

These two hyperactive fusion proteins, part estrogen receptor and part fusion partner protein, caused profound endocrine therapy resistance because the part of the estrogen receptor that interacts with estrogen and with breast cancer drug tamoxifen was replaced with a protein fragment from the partner gene, which caused unregulated growth. More surprising was the ESR1 fusions also could promote cell motility, and cancer spread though the activation of a metastasis program called epithelial to mesenchymal transition. This potentially explains why these active ESR1 fusion genes have been found only in advanced breast cancer cases so far; they are the actual cause of metastasis.

The researchers also found a way to suppress ESR1 fusion-driven growth at primary and metastatic sites using existing FDA-approved breast cancer drugs that target CDK4/6 cell cycle proteins called palbiciclib and abemacicilib.

"These findings are important because they help explain how endocrine therapy drug resistance and metastasis are linked lethal processes. Our studies should drive more dedicated efforts to identify and characterize additional ESR1 fusions in early and late-stage ER+ breast cancer," Lei added. More ESR1 fusions are being detected in metastatic cancer, and many precision medicine programs are now including RNA-sequencing in patient care plans as sequencing technologies continue to improve and become more cost effective.

"From the clinical perspective, this study suggests that the diagnosis of an active ESR1 could guide treatment by selecting CDK4/6 inhibitor monotherapy for patients with highly endocrine therapy resistant metastatic ER positive disease where traditionally, chemotherapy has been the standard of care," said Dr. Matthew Ellis, McNair Scholar and director of the Lester and Sue Smith Breast Center, part of the NCI-designated Dan L Duncan Comprehensive Cancer Center at Baylor, and senior author on the paper.

"This research adds to the catalog of clinically actionable changes in the genome," Ellis added.

Explore further: Researchers solving treatment resistance in most common breast cancer

More information: Jonathan T. Lei et al. Functional Annotation of ESR1 Gene Fusions in Estrogen Receptor-Positive Breast Cancer, Cell Reports (2018). DOI: 10.1016/j.celrep.2018.07.009

Related Stories

Researchers solving treatment resistance in most common breast cancer

February 7, 2018
At Magee-Womens Research Institute (MWRI) and UPMC Hillman Cancer Center, a large team of clinical and laboratory researchers dedicated to understanding treatment resistance in the most common form of breast cancer have identified ...

PET tracer identifies estrogen receptor expression differences in breast cancer patients

August 6, 2018
In metastatic breast cancer, prognosis and treatment is largely influenced by estrogen receptor (ER) expression of the metastases. However, little is known about ER expression across metastases throughout the body and surrounding ...

Breast cancer growth signals are enhanced by a protein outside cells

July 6, 2018
New research uncovers how a sticky protein called fibronectin promotes the activity of estrogen in breast cancer cells. The study, "Fibronectin rescues estrogen receptor α from lysosomal degradation in breast cancer cells," ...

Defects in DNA damage repair can drive treatment resistance in estrogen receptor positive breast cancers

May 28, 2018
DNA is the warehouse of genetic information in each living cell, and its integrity and stability are essential to life. This stability and integrity is maintained by DNA damage repair machinery. In a study published in Clinical ...

Study shines new light on genetic alterations of aggressive breast cancer subtype

August 7, 2014
Researchers from the Lester and Sue Smith Breast Center at Baylor College of Medicine have uncovered new information about the genetic alterations that may contribute to the development of a subtype breast cancer typically ...

Study sheds new light on mechanism of breast cancer treatment resistance

February 12, 2018
A study by researchers at Dana-Farber Cancer Institute has illuminated a specific mechanism by which estrogen receptor-positive (ER+) breast cancers can become resistant to standard therapies and metastasize.

Recommended for you

Student develops microfluidics device to help scientists identify early genetic markers of cancer

October 16, 2018
As anyone who has played "Where's Waldo" knows, searching for a single item in a landscape filled with a mélange of characters and objects can be a challenge. Chrissy O'Keefe, a Ph.D. student in the Department of Biomedical ...

A bad influence—the interplay between tumor cells and immune cells

October 16, 2018
Research at Huntsman Cancer Institute (HCI) at the University of Utah (U of U) yielded new insights into the environment surrounding different types of lung tumors, and described how these complex cell ecosystems may in turn ...

Technique to 'listen' to a patient's brain during tumour surgery

October 16, 2018
Surgeons could soon eavesdrop on a patient's brain activity during surgery to remove their brain tumour, helping improve the accuracy of the operation and reduce the risk of impairing brain function.

Researchers elucidate roles of TP63 and SOX2 in squamous cell cancer progression

October 16, 2018
Squamous cell carcinomas (SCCs) are aggressive malignancies arising from the squamous epithelium of various organs, such as the esophagus, head and neck, lungs, and skin. Previous studies have demonstrated that two master ...

Function of neutrophils during tumor progression unraveled

October 15, 2018
Researchers at The Wistar Institute have characterized the function of neutrophils, a type of white blood cells, during early stages of tumor progression, showing that they migrate from the bone marrow to distant sites and ...

Delving where few others have gone, leukemia researchers open new path

October 15, 2018
A Wilmot Cancer Institute study uncovers how a single gene could be at fault in acute myeloid leukemia (AML), one of the deadliest cancers. The breakthrough gives researchers renewed hope that a gene-targeted therapy could ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.