Researchers uncover potential new drug targets in the fight against HIV

August 7, 2018, Johns Hopkins University
Credit: CC0 Public Domain

Johns Hopkins scientists report they have identified two potential new drug targets for the treatment of HIV. The finding is from results of a small, preliminary study of 19 people infected with both HIV—the virus that causes AIDS—and the hepatitis C virus. The study revealed that two genes—CMPK2 and BCLG, are selectively activated in the presence of type 1 interferon, a drug once used as the first line of treatment against hepatitis C.

Results of the study were published online Aug. 1 in Science Advances.

"We've known that HIV worsens our ability to treat hepatitis C with type 1 , but why that was has been unclear. In some way the viruses' interactions with each other and with the treatment seemed at the root of the failure," says Ashwin Balagopal, M.D., associate professor of medicine at the Johns Hopkins University School of Medicine.

To study the relationship, the researchers enrolled 19 participants—15 men and four women, all over the age of 20—from several Baltimore clinics, including the Johns Hopkins HIV Clinic and a Baltimore City Health Department sexually transmitted disease clinic. All participants were diagnosed with chronic HIV and hepatitis C infections.

The participants received injections of interferon to treat their hepatitis C. Before and after each treatment, the researchers took blood samples to measure the amount of both hepatitis C and HIV present in the blood.

After one week of treatment, the participants had on average 10 times less HIV in their blood.

"This told us that the interferon we were using to treat hepatitis C was working to control HIV as well, but we needed to investigate how it was accomplishing this," says Balagopal.

To do this, Balagopal and his colleagues studied the patients' CD4 T —the immune cells most suppressed and affected by HIV—in the lab.

In those cells, the researchers measured the levels of numerous gene products before and after interferon treatment.

They identified 99 genes with higher levels of expression after interferon treatment. Of these genes, the researchers found that two, CMPK2 and BCLG, had not been previously linked to HIV. Both genes are thought to be involved in the processes that guide how cells divide.

The researchers then infected lab-grown human cells (not from the 19 patients) with HIV to further study the interactions between the two genes and interferon.

First, they engineered human immune cells to render them unable to produce the protein made by the CMPK2 gene. They then added interferon and tested the cells' HIV levels, finding that control cells with functioning CMPK2 had 10 times less HIV than cells in which CMPK2 was blocked.

On the other hand, BCLG normally has very low expression levels, according to the investigators, and is difficult to eliminate from human cells. So the researchers opted to increase its expression by adding more BCLG genes to HeLa cells infected with HIV in the lab.

The researchers then again added interferon to the cells and 48 hours later, the cells engineered to have more BCLG expression had half the amount of HIV compared to cells with normal BCLG expression.

This seems to indicate that CMPK2 and BCLG play a role in interferon's ability to suppress HIV, according to Balagopal, and potentially could serve as targets for new drug approaches to HIV treatment, particularly in people who are co-infected.

The researchers caution that the level of HIV suppression they saw in these interferon experiments is not large enough to warrant interferon's use as a standalone treatment.

More than 1.1 million people in the U.S. are living with HIV and 25 percent of them are estimated to be co-infected with the hepatitis C virus. The researchers say nearly one-third of the HIV patients in their Baltimore clinics also have C. Hepatitis C causes inflammation of the liver and, though it can take years for symptoms to arise, can cause nausea, weight loss, cirrhosis, liver cancer and liver failure. Complications from this virus are accelerated in people co-infected with HIV.

In the future, Balagopal hopes to better understand the genes and their roles in HIV suppression by investigating the cellular pathways with which they interact. He also hopes to examine the ' effects on HIV's ability to hide for decades within cells—a factor that has stalled scientists' efforts to cure HIV infections.

Explore further: Genetic variation may increase risk of liver damage in patients with chronic hepatitis B

More information: Ramy El-Diwany et al. CMPK2 and BCL-G are associated with type 1 interferon–induced HIV restriction in humans, Science Advances (2018). DOI: 10.1126/sciadv.aat0843

Related Stories

Genetic variation may increase risk of liver damage in patients with chronic hepatitis B

July 27, 2018
A new study has shown that genetic variation may increase the risk of severe liver damage in Caucasians with chronic hepatitis B infection.

Hepatitis therapy: Kupffer cells adjust the balance between pathogen control and hepatocyte regenera

January 17, 2018
Inflammation of the liver can result from different causes. Besides infections with hepatitis B virus (HBV) and hepatitis C virus (HCV), other viruses such as cytomegalovirus (CMV) are able to trigger acute hepatitis. Sometimes ...

Hepatitis C virus tricks liver cells to sabotage immune defenses

November 17, 2016
The virus that causes hepatitis C protects itself by blocking signals that call up immune defenses in liver cells, according to University of Washington researchers and colleagues reporting Nov. 14 in Nature Medicine.

T-bet tackles hepatitis

September 15, 2014
A single protein may tip the balance between ridding the body of a dangerous virus and enduring life-long chronic infection, according to a report appearing in The Journal of Experimental Medicine.

Predicting hepatitis C treatment success

May 8, 2014
Levels of interferon-stimulated genes in the liver and blood could help predict if a patient with hepatitis C will respond to conventional therapy, researchers at Kanazawa University suggest.

Predicting the outcome of hepatitis C virus treatment

July 1, 2014
Millions of people throughout the world are infected with hepatitis C virus (HCV), which can lead to cirrhosis of the liver and cancer. Directly acting antiviral agents inhibit viral proteins and have been used to successfully ...

Recommended for you

Long-acting injectable implant shows promise for HIV treatment and prevention

October 9, 2018
A persistent challenge in HIV/AIDS treatment and prevention is medication adherence – getting patients to take their medication as required to get the best results.

Scientists develop rapid test for diagnosing tuberculosis in people with HIV

October 8, 2018
An international team that includes Rutgers scientists has made significant progress in developing a urine diagnostic test that can quickly, easily and inexpensively identify tuberculosis infection in people also infected ...

Researchers uncover new role of TIP60 protein in controlling tumour formation

October 8, 2018
Scientists from the Cancer Science Institute of Singapore (CSI Singapore) at the National University of Singapore (NUS) have discovered a new molecular pathway that controls colorectal cancer development, and their exciting ...

Combination therapy targets latent reservoir of HIV

October 3, 2018
With more than 35 million people worldwide living with the virus and nearly 2 million new cases each year, the human immunodeficiency virus (HIV) remains a major global epidemic. Existing antiretroviral drugs do not cure ...

Anti-integrin therapy effect on intestinal immune system in HIV-infected patients

October 3, 2018
In a study published today in Science Translational Medicine, Mount Sinai researchers describe for the first time a mechanism that may shrink collections of immune cells in the gastrointestinal (GI) tract, called lymphoid ...

No 'reservoir': Detectable HIV-1 in treated human liver cells found to be inert

October 1, 2018
In a proof-of-principle study, researchers at Johns Hopkins report that a certain liver immune cell called a macrophage contains only defective or inert HIV-1 copies, and aren't likely to restart infection on their own in ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.