A single drop of blood makes skin cells line up

September 13, 2018, Eindhoven University of Technology
blood
Credit: Wikimedia Commons

What happens to skin cells when they are confronted with blood? A team of researchers from Oslo University Hospital, led by Emma Lång and Stig Ove Bøe, performed experiments on blood-deprived cells that were subsequently exposed to blood serum. Remarkably, all the cells started to move and grow in the same direction as soon as the blood serum was added. Assistant Professor Liesbeth Janssen and master student Marijke Valk from Eindhoven University of Technology (TU/e) developed a matching simulation model, revealing new insights into the mechanisms of wound healing. The results were published in the journal Nature Communications this week.

A person encounters approximately 10.000 injuries during a normal lifespan, ranging from small cuts to traumatic injuries and surgery. In most cases, wounds are miraculously repaired, but in some cases the healing process is defective and leads to chronic . This is commonly associated with aging and certain pathologies such as diabetes and obesity.

It is well established that plays an important role in , and various molecular components in the blood are known to trigger tissue repair processes after injury. In a Nature Communications paper, researchers have investigated what happens when dormant are brought into contact with blood, when no wound is present. They found that the induces spontaneous migration and proliferation of cells—two processes that are important in wound healing. Furthermore, they demonstrate that the cell divisions are polarized and aligned with the direction of , a new insight that may potentially be relevant in tissue repair. The study shows that the presence of blood serum is sufficient to activate dormant skin cells into a migratory and proliferative state, and that a wound edge—previously believed to trigger cell migration and growth—is not necessarily required.

The team from Oslo subsequently studied how the movement and growth of cells is affected by the connectivity between cells. Interestingly, they saw that disconnected cells undergo only random individual motion, but that strong cell-cell connectivities lead to much more pronounced collective and coordinated cell migration, spanning distances of micro- and even millimeter length scales.

To understand this phenomenon, Valk and Janssen of TU/e developed a numerical simulation model that mimics the shape and movement of the cells both in the presence and absence of blood. In their model, blood-deprived cells remain in a quiescent state, while the addition of blood activates cells to undergo spontaneous motion. The simulations indicate that enhanced cell-cell connectivity causes cells to align more strongly with their neighbors, ultimately giving rise to the large-scale collective motion observed in experiments.

It is known that inflammation and increased blood flow to a wound site can be activated without having an open wound, for example by bruising. The scientists involved think their results may be relevant in this field. "One may speculate, based on our data, that cell migration is also activated in these situations," says Professor Bøe. "We may also speculate that our skin cells are much more active and dynamic than previously thought and that blood-regulated skin dynamics occurs in many different situations."

"The next step now is to understand why the presence of blood triggers the active forces inside the cells, and why the cells divide asymmetrically in the direction of cell ," says Janssen.

Explore further: Unexpected helpers in wound healing

More information: Emma Lång et al, Coordinated collective migration and asymmetric cell division in confluent human keratinocytes without wounding, Nature Communications (2018). DOI: 10.1038/s41467-018-05578-7

Related Stories

Unexpected helpers in wound healing

January 24, 2018
Nerve cells in the skin help wounds to heal. When an injury occurs, cells known as glial cells change into repair cells and disseminate into the wound, where they help the skin to regenerate, researchers from the University ...

Mechanisms of wound healing are clarified in zebrafish study

October 29, 2013
A crucial component of wound healing in many animals, including humans, is the migration of nearby skin cells toward the center of the wound. These cells fill the wound in and help prevent infection while new skin cells regenerate.

Scarless wound healing—applying lessons learned from fetal stem cells

April 10, 2014
In early fetal development, skin wounds undergo regeneration and healing without scar formation. This mechanism of wound healing later disappears, but by studying the fetal stem cells capable of this scarless wound healing, ...

Study: Adult human immune cells have stem cell-like function that stimulates healing

March 6, 2018
A new study led by researchers at The Ohio State University Wexner Medical Center shows that human immune cells have stem cell-like function that can help stop prolonged inflammation and stimulate healing.

Understanding aspirin's effect on wound healing offers hope for treating chronic wounds

May 12, 2014
In addition to its known capacity to promote bleeding events, aspirin also inhibits wound healing. New research published in The Journal of Experimental Medicine now describes how aspirin acts on key skin cells called keratinocytes, ...

Recommended for you

RNAi therapy mitigates preeclampsia symptoms

November 19, 2018
A collaboration of scientists from the University of Massachusetts Medical School, Beth Israel Deaconess Medical Center and Western Sydney University, have shown that an innovative new type of therapy using small interfering ...

Skeletal imitation reveals how bones grow atom-by-atom

November 19, 2018
Researchers from Chalmers University of Technology, Sweden, have discovered how our bones grow at an atomic level, showing how an unstructured mass orders itself into a perfectly arranged bone structure. The discovery offers ...

Signal peptides' novel role in glutamate receptor trafficking and neural synaptic activity

November 19, 2018
Glutamate is the major excitatory neurotransmitter in the brain, and the postsynaptic expression level of glutamate receptors is a critical factor in determining the efficiency of information transmission and the activity ...

New insights into how an ordinary stem cell becomes a powerful immune agent

November 19, 2018
How do individual developing cells choose and commit to their "identity"—to become, for example, an immune cell, or a muscle cell, or a neuron?

A molecule for fighting muscular paralysis

November 19, 2018
Myotubular myopathy is a severe genetic disease that leads to muscle paralysis from birth and results in death before two years of age. Although no treatment currently exists, researchers from the University of Geneva (UNIGE), ...

Mouse model aids study of immunomodulation

November 19, 2018
Because mice do not respond to immunomodulatory drugs (IMiDs), preclinical therapeutic and safety studies of the effects of IMiDs have not been possible in existing types of mice. This has led to an inability to accurately ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.