Finding that links ALS/ataxia to cellular stress opens new approaches for treatment

September 7, 2018, University of Utah
An MRI with increased signal in the posterior part of the internal capsule which can be tracked to the motor cortex consistent with the diagnosis of ALS. Credit: Frank Gaillard/Wikipedia

Few treatments exist for neurodegenerative diseases that progressively rob a person's ability to move and think, yet the results of a new study could potentially open additional approaches for exploration.

Scientists at University of Utah Health report for the first time that a protein, called Staufen1, accumulates in cells of patients suffering from degenerative ataxia or (ALS), also known as Lou Gehrig's . Depleting the protein from affected mice improved symptoms including motor function. These results suggest that targeting Staufen1 could have therapeutic potential in people. The research is published in Nature Communications.

"This is a completely new avenue for thinking about neurodegenerative diseases," says Stefan Pulst, M.D., Dr. Med., chair of Neurology at U of U Health and senior researcher on the study. "A protein that had never been known to be involved in neurodegeneration is now a great target for drug treatments."

Previously, researchers had not considered Staufen1 a culprit in neurodegenerative disease until they discovered its association with ataxia, a rare condition that causes patients to lose control of their movement. They found that Staufen1 binds Ataxin2, a protein that is both responsible for ataxia and a risk factor for ALS.

A role for Staufen1 in disease pathology became evident upon genetically depleting it from mice with an ataxia-like condition. The animals' condition improved at both physiological and molecular levels.

Beginning at 12 weeks of age, mice performed significantly better on a rotarod performance test, measuring the length of time the animals could walk or run on an accelerating spinning rod. In addition, the expression of a handful of proteins that had diminished in brain cells during disease reverted back to near-normal levels.

"Staufen was first discovered in the fruit fly and has been studied for 30 years, but it had never been connected to anything related to disease," says Pulst. "This is a novel finding." Future investigations will focus on determining whether drugs or therapies that reduce Staufen1 could be developed as treatments for multiple diseases.

Beyond these applications, the biology of Staufen1 could reveal new clues about neurodegenerative disease. The accumulates with Ataxin2 and other proteins and RNAs in dense clusters called granules, a hallmark of ataxia, ALS and other conditions such as frontotemporal dementia. When Staufen1 was depleted from mice with ataxia, it not only improved the pathology of disease but also rid cells of stress granules.

While the precise role of stress granules is still an intensive area of study, they are believed to help cells weather stress caused by toxins or certain disease conditions, explains co-author Daniel Scoles, Ph.D., associate professor of Neurology at U of U Health. One function could be to prevent proteins from being made under suboptimal .

The findings connect Staufen1 to the emerging concept that are linked to malfunctions in the way cells cope with . One implication, says Scoles, is that Staufen1-targeted therapies could work against a number of disorders in which emerge, although it remains to be determined whether the aggregates themselves lead to disease.

"Our results put the stress granule in focus as a structure to target in disease," says Scoles.

Explore further: Study finds genetic mutation causes 'vicious cycle' in most common form of amyotrophic lateral sclerosis

More information: Sharan Paul et al, Staufen1 links RNA stress granules and autophagy in a model of neurodegeneration, Nature Communications (2018). DOI: 10.1038/s41467-018-06041-3

Related Stories

Study finds genetic mutation causes 'vicious cycle' in most common form of amyotrophic lateral sclerosis

December 8, 2017
University of Michigan-led research brings scientists one step closer to understanding the development of neurodegenerative disorders such as ALS.

Molecular culprits of protein aggregation in ALS and FTLD

July 19, 2018
The mutated and aggregated protein FUS is implicated in two neurodegenerative diseases: amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD). Using a newly developed fruit fly model, researchers ...

Researchers use gene silencing to alleviate common ataxia

June 20, 2018
In what researchers are calling a game changer for future ataxia treatments, a new study showed the ability to turn down the disease progression of the most common dominantly inherited ataxia.

Turning off the protein tap – a new clue to neurodegenerative disease

February 8, 2017
Disabling a part of brain cells that acts as a tap to regulate the flow of proteins has been shown to cause neurodegeneration, a new study from The University of Manchester has found.

Recommended for you

New insights into the way the brain combines memories to solve problems

September 19, 2018
Humans have the ability to creatively combine their memories to solve problems and draw new insights, a process that depends on memories for specific events known as episodic memory. But although episodic memory has been ...

What your cell phone camera tells you about your brain

September 19, 2018
Driving down a dark country road at night, you see a shape ahead on the roadside. Is it a deer or a mailbox? Your brain is structured to make the best possible decision given its limited resources, according to new research ...

Neuroscience of envy: Activated brain region when others are rewarded revealed

September 19, 2018
How we feel about our own material wellbeing and status in society is largely determined by our evaluation of others. However, the neurological underpinnings of how we monitor the complex social environments under conditions ...

Plasticity is enhanced but dysregulated in the aging brain

September 19, 2018
They say you can't teach old dogs new tricks, but new research shows you can teach an old rat new sounds, even if the lesson doesn't stick very long.

The 'real you' is a myth – we constantly create false memories to achieve the identity we want

September 19, 2018
We all want other people to "get us" and appreciate us for who we really are. In striving to achieve such relationships, we typically assume that there is a "real me". But how do we actually know who we are? It may seem simple ...

Use of electrical brain stimulation to foster creativity has sweeping implications

September 18, 2018
What is creativity, and can it be enhanced—safely—in a person who needs a boost of imagination? Georgetown experts debate the growing use of electrical devices that stimulate brain tissue, and conclude there is potential ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.