Optimizing technologies for discovering cancer cell mutations

September 10, 2018, Pennsylvania State University
Credit: CC0 Public Domain

Cancer cells often have mutations in their DNA that can give scientists clues about how the cancer started or which treatment may be most effective. Finding these mutations can be difficult, but a new method may offer more complete, comprehensive results.

A team of researchers has developed a new framework that can combine three existing methods of finding these large mutations—or structural variants—into a single, more complete picture.

Feng Yue, assistant professor of biochemistry and molecular biology at Penn State College of Medicine, said the new —published today (Sept. 10) in Nature Genetics—could help researchers find new structural variations within cancer cell DNA and learn more about how those cancers begin.

"We were able to design and use this computational framework to connect the three methods together, to get the most comprehensive view of the genome," Yue said. "Each method by itself can only review a portion of the structural variations, but when you integrate the results of the three different methods, you can get the most comprehensive view of the cancer genome."

Structural variants are large mutations in DNA that can result in cancer causing being turned on. For example, certain types of brain cancer, such as the types that afflicted senators John McCain and Edward Kennedy, can be caused by structural variants that amplify certain cancer causing genes. In some cancers, knowing a patient has this abnormality helps doctors decide on the best treatment plan.

Yue said finding these structural variants is important for several reasons.

"If you are a cancer patient, knowing about the structural variants that lead to the cancer can help us understand why you got sick and possibly which treatment could be best," Yue said.

The researchers used three existing methods for finding structural variants: optical mapping, high-throughput chromosome conformation capture (known as Hi-C), and whole genome sequencing, which has been used to discover the majority of structural variants that are already known.

Using their new method, the researchers were able to find structural variations for over 30 types of cancer cells. The team of scientists was also able to use the same methods to begin to learn why certain classes of structural variants may be contributing to cancers.

"Many of the structural variants that are found in human cancers do not appear to directly impact a gene," said Jesse Dixon, a fellow at the Salk Institute in San Diego, and one of the co-authors of the work. "Instead, many structural variants appear in non-coding portions of the genome, what people have historically referred to as junk DNA, and it can be a bit of a mystery as to why these may be contributing to cancer."

What the researchers were able to observe is that some structural variants appear to affect regulatory gene "switches" in noncoding sequences of DNA. Defective switches prevent appropriate turning on or off of specific genes and this can contribute to cancer.

"With many cancers, the gene itself is OK but the 'switch' that controls it is what's causing problems," Yue said. "Using our approach, it's possible that we could find out that the switch was broken and find a cure based on the specific target for that switch. If it's switched off, for example, maybe we could use gene editing technology to turn it back on."

They also used the Hi-C method to explore how structural variations can affect 3-D genome structure—how DNA folds itself within the cell.

"Cells are small, but their DNA is very long. Laid out in a line, all the DNA from one cell would be more than two meters long," said Dr. Job Dekker, professor and co-director of the program in Systems Biology at University of Massachusetts, investigator of the Howard Hughes Medical Institute and a senior author of the paper. "That's why DNA needs to fold in intricate ways. We have found that genomic alterations in cancer cells can lead to differences in how the genome folds and this can lead to cases where genes become turned on or off by the wrong regulatory switches."

The team of scientists was able to discover that structural variants impact genome folding in cancer , and that these changes may be contributing to the cancer.

"One of the discoveries we had made in the past is that our genome is folded up into distinct structures, almost like little neighborhoods," Dixon said. "It appears as though some structural variants cause changes to these neighborhoods, such that a cancer causing gene is moved from a neighborhood where the gene is kept quiet into one where the gene becomes activated."

In the future, Yue and his research team plan to apply the new method in more cancer patients and they are working closely with the Penn State Institute for Personalized Medicine. The scientists suggest that this work could lead to a better ability to predict which structural variants may contribute to cancer, and which genes they may be targeting.

"If we can understand which mutations are driving which genes, this has the potential to suggest that the would be susceptible to treatment by particular drugs that target those genes," Yue said. "Such an approach has been really challenging in the past for non-coding structural mutations in the ."

Explore further: Altered gene regulation is more widespread in cancer than expected

More information: Integrative detection and analysis of structural variation in cancer genomes, Nature Genetics (2018). DOI: 10.1038/s41588-018-0195-8 , https://www.nature.com/articles/s41588-018-0195-8

Related Stories

Altered gene regulation is more widespread in cancer than expected

July 10, 2018
A large-scale study provides new insights into the mechanisms that can lead to cancer. It can happen when genes mutate, but cancer also can occur when the genetic regions involved in regulating gene expression change. In ...

Massive genome havoc in breast cancer is revealed

July 12, 2018
In cancer cells, genetic errors wreak havoc. Misspelled genes, as well as structural variations—larger-scale rearrangements of DNA that can encompass large chunks of chromosomes—disturb carefully balanced mechanisms that ...

Big Data analysis identifies new cancer risk genes

July 10, 2018
Researchers at the Centre for Genomic Regulation (CRG) in Barcelona have developed a new method to identify genes contributing to heritable cancer risk. Their work, which is published in Nature Communications, is a success ...

New breast cancer targets

May 4, 2018
Genome-wide association studies (GWAS) have identified more than 150 genetic variations associated with increased risk for breast cancer. Most of these variants are not located in protein-coding gene regions but are assumed ...

The role of cohesin in genome 3-D structure helps for a better understanding of tumor cells

June 5, 2018
In recent years, it has become evident that the spatial organisation of the genome is key for its function. This depends on a number of factors, including the cohesin protein complex. This essential complex is present in ...

Novel genomics tool enables more accurate identification of rare mutations in cancer cells

March 22, 2018
A new computational method developed by researchers at the New York Genome Center (NYGC) allows scientists to identify rare gene mutations in cancer cells with greater accuracy and sensitivity than currently available approaches.

Recommended for you

Use genetic data to predict the best time of day to give radiotherapy to breast cancer patients, say researchers

November 19, 2018
A new clinical study led by the University of Leicester and conducted in the HOPE clinical trials facility at Leicester's Hospitals has revealed the pivotal role that changing the time of day that a patient receives radiotherapy ...

A molecule for fighting muscular paralysis

November 19, 2018
Myotubular myopathy is a severe genetic disease that leads to muscle paralysis from birth and results in death before two years of age. Although no treatment currently exists, researchers from the University of Geneva (UNIGE), ...

New blood test detects early stage ovarian cancer

November 19, 2018
Research on a bacterial toxin first discovered in Adelaide has led to the development a new blood test for the early diagnosis of ovarian cancer—a disease which kills over 1000 Australian women and 150,000 globally each ...

New dual-action cancer-killing virus

November 19, 2018
Scientists have equipped a virus that kills carcinoma cells with a protein so it can also target and kill adjacent cells that are tricked into shielding the cancer from the immune system.

New drug discovery could halt spread of brain cancer

November 19, 2018
The tissues in our bodies largely are made of fluid. It moves around cells and is essential to normal body function.

Progress in genetic testing of embryos stokes fears of designer babies

November 16, 2018
Recent announcements by two biotechnology companies have stoked fears that designer babies could soon be an option for those who can afford to pick and choose which features they want for their offspring. The companies, MyOme ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.