New sensors track dopamine in the brain for more than year

September 12, 2018, Massachusetts Institute of Technology
Ball-and-stick model of the dopamine molecule, a neurotransmitter that affects the brain's reward and pleasure centers. Credit: Jynto/Wikipedia

Dopamine, a signaling molecule used throughout the brain, plays a major role in regulating our mood, as well as controlling movement. Many disorders, including Parkinson's disease, depression, and schizophrenia, are linked to dopamine deficiencies.

MIT neuroscientists have now devised a way to measure in the for more than a year, which they believe will help them to learn much more about its role in both healthy and diseased brains.

"Despite all that is known about dopamine as a crucial in the brain, implicated in neurologic and neuropsychiatric conditions as well as our abilty to learn, it has been impossible to monitor changes in the online release of dopamine over time periods long enough to relate these to clinical conditions," says Ann Graybiel, an MIT Institute Professor, a member of MIT's McGovern Institute for Brain Research, and one of the senior authors of the study.

Michael Cima, the David H. Koch Professor of Engineering in the Department of Materials Science and Engineering and a member of MIT's Koch Institute for Integrative Cancer Research, and Rober Langer, the David H. Koch Institute Professor and a member of the Koch Institute, are also senior authors of the study. MIT postdoc Helen Schwerdt is the lead author of the paper, which appears in the Sept. 12 issue of Communications Biology.

Long-term sensing

Dopamine is one of many neurotransmitters that neurons in the brain use to communicate with each other. Traditional systems for measuring dopamine—carbon electrodes with a shaft diameter of about 100 microns—can only be used reliably for about a day because they produce scar tissue that interferes with the electrodes' ability to interact with dopamine.

In 2015, the MIT team demonstrated that tiny microfabricated could be used to measure in a part of the brain called the striatum, which contains dopamine-producing cells that are critical for habit formation and reward-reinforced learning.

Because these probes are so small (about 10 microns in diameter), the researchers could implant up to 16 of them to measure dopamine levels in different parts of the striatum. In the new study, the researchers wanted to test whether they could use these sensors for long-term dopamine tracking.

"Our fundamental goal from the very beginning was to make the sensors work over a long period of time and produce accurate readings from day to day," Schwerdt says. "This is necessary if you want to understand how these signals mediate specific diseases or conditions."

To develop a sensor that can be accurate over long periods of time, the researchers had to make sure that it would not provoke an immune reaction, to avoid the that interferes with the accuracy of the readings.

The MIT team found that their tiny sensors were nearly invisible to the immune system, even over extended periods of time. After the sensors were implanted, populations of microglia (immune cells that respond to short-term damage), and astrocytes, which respond over longer periods, were the same as those in brain tissue that did not have the probes inserted.

In this study, the researchers implanted three to five sensors per animal, about 5 millimeters deep, in the striatum. They took readings every few weeks, after stimulating from the brainstem, which travels to the striatum. They found that the measurements remained consistent for up to 393 days.

"This is the first time that anyone's shown that these sensors work for more than a few months. That gives us a lot of confidence that these kinds of sensors might be feasible for human use someday," Schwerdt says.

Monitoring Parkinson's

If developed for use in humans, these sensors could be useful for monitoring Parkinson's patients who receive deep brain stimulation, the researchers say. This treatment involves implanting an electrode that delivers electrical impulses to a structure deep within the brain. Using a sensor to monitor dopamine levels could help doctors deliver the stimulation more selectively, only when it is needed.

The researchers are now looking into adapting the sensors to measure other neurotransmitters in the brain, and to measure electrical signals, which can also be disrupted in Parkinson's and other diseases.

"Understanding those relationships between chemical and electrical activity will be really important to understanding all of the issues that you see in Parkinson's," Schwerdt says.

Explore further: New sensor could reveal dopamine's role in learning and habit formation

Related Stories

New sensor could reveal dopamine's role in learning and habit formation

March 3, 2017
MIT researchers have devised a way to measure dopamine in the brain much more precisely than previously possible, which should allow scientists to gain insight into dopamine's roles in learning, memory, and emotion.

HIV lies dormant in brain, increasing risk of dementia, but how?

May 23, 2018
The HIV virus, which causes AIDS, has long been known to target and disable cells of the immune system, which are responsible for fighting off invading microorganisms and for suppressing malignant cancers. More recently, ...

Delving deep into the brain

May 1, 2014
Launched in 2013, the national BRAIN Initiative aims to revolutionize our understanding of cognition by mapping the activity of every neuron in the human brain, revealing how brain circuits interact to create memories, learn ...

New optical probes allow ultrafast imaging of dopamine activity in the brain

June 4, 2018
UC Davis neuroscientist Lin Tian and her team, Tommaso Patriarchi, Gerard Broussard and Ruqiang Liang, have developed fluorescence sensors that are opening a new era for the optical recording of dopamine activity in the living ...

New method maps the dopamine system in Parkinson's patients

February 14, 2018
With the aid of a PET camera, researchers from Karolinska Institutet in Sweden have developed a new method for investigating the dopamine system in the brains of patients suffering from Parkinson's disease. The method measures ...

Intracellular dopamine receptor function may offer hope to schizophrenia patients

December 9, 2016
Dopamine is a chemical in the brain that plays an important role in controlling movement, emotion and cognition. Dopamine dysfunction is believed to be one of the causes of disorders like Schizophrenia, Tourette's syndrome, ...

Recommended for you

Use of electrical brain stimulation to foster creativity has sweeping implications

September 18, 2018
What is creativity, and can it be enhanced—safely—in a person who needs a boost of imagination? Georgetown experts debate the growing use of electrical devices that stimulate brain tissue, and conclude there is potential ...

Engineers decode conversations in brain's motor cortex

September 18, 2018
How does your brain talk with your arm? The body doesn't use English, or any other spoken language. Biomedical engineers are developing methods for decoding the conversation, by analyzing electrical patterns in the motor ...

Team identifies brain's lymphatic vessels as new avenue to treat multiple sclerosis

September 17, 2018
Lymphatic vessels that clean the brain of harmful material play a crucial role in the development and progression of multiple sclerosis, new research from the University of Virginia School of Medicine suggests. The vessels ...

Circuit found for brain's statistical inference about motion

September 17, 2018
As the eye tracks a bird flying past, the muscles that pan the eyeballs to keep the target in focus set their pace not only on the speed they see, but also on a reasonable estimate of the speed they expect from having watched ...

Mouse study reveals that activity, not rest, speeds recovery after brain injury

September 17, 2018
When recovering from a brain injury, getting back in the swing of things may be more effective than a prolonged period of rest, according to a new Columbia study in mice. These findings offer a compelling example of the brain's ...

Opioid users could benefit from meth-relapse prevention strategy, study finds

September 17, 2018
New research raises the possibility that a wider group of people battling substance use disorders may benefit from a Scripps Research-developed relapse-prevention compound than previously thought.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.