How does brain structure influence performance on language tasks?

October 17, 2018 by Charlotte Hsu, University at Buffalo
Scientists are using computational models of the brain to simulate how the structure of the brain may impact brain activity and, ultimately, human behavior. The research focuses on interconnectivity, looking at how different regions are linked to and interact with one another (traits that vary between individuals). Credit: Bansal et al., PLOS Computational Biology, October 2018, available under CC BY license, https://creativecommons.org/licenses/by/4.0/

The architecture of each person's brain is unique, and differences may influence how quickly people can complete various cognitive tasks.

But how neuroanatomy impacts performance is largely an open question.

To learn more, scientists are developing a new tool—computational models of the brain—to simulate how the structure of the brain may impact and, ultimately, human behavior. The research focuses on interconnectivity within the brain, looking at how different regions are linked to and interact with one another (traits that vary between individuals).

In an initial proof-of-concept study, a team led by University at Buffalo mathematician Sarah Muldoon finds that this approach shows promise for understanding the interplay between brain structure and performance on language-related tasks. The research was published in PLOS Computational Biology on Oct. 17.

"We are creating these personalized brain network models to understand what the brain is doing, based on how connected different regions of a person's brain are to one another," says first author Kanika Bansal, a postdoctoral researcher jointly working at UB, the U.S. Army Research Laboratory (ARL) and Columbia University.

"Models like this are powerful tools because they allow us to conduct 'in silico' experiments to understand brain function on a personal basis," adds Muldoon, Ph.D., assistant professor of mathematics in the UB College of Arts and Sciences and a faculty member in UB's Computational and Data-Enabled Science and Engineering and neuroscience programs.

The power of a personalized brain model

In the new study, researchers created data-driven mathematical models of the individual brains of 10 people based on diffusion spectrum images which capture the structural wiring of the subjects' actual brains.

Scientists then used the models to learn about each person's brain, including:

  • How easily the brain jumps into an active state when it's stimulated.
  • Which brain regions become synchronized, exhibiting similar activity, when the left , an area of the brain important to language, is stimulated.

The research identified some relationships between these characteristics of the brain and how quickly people were able to carry out three language-demanding tasks: saying the first verb that came to mind when presented with a noun; filling in a missing word in a sentence; and reading a large number. (Each participant completed each activity multiple times before and after receiving to the left inferior frontal gyrus.)

While small, the study demonstrates the potential of data-driven modeling for learning about the link between and task performance.

Possible applications in treating disease, enhancing performance

Developing personalized models of brain activity could not only improve neuroscience research, but also spur advancements in using brain stimulation to treat disease or enhancing human performance on various tasks.

"It's important to create biologically inspired ways to predict individual responses to brain stimulation," says co-author John Medaglia, Ph.D., assistant professor of psychology at Drexel University and adjunct assistant professor of neurology at the University of Pennsylvania. "The attractive idea here is that we can examine complex activity in each person's brain networks. Then, we can define relatively simple measures that are strongly related to real-world performance. This balance between simulating complex processes and making simple predictions is necessary to drive research forward."

"The Army has a challenge of creating Soldier systems at large scale for the thousands of military who protect our civilians around the world," says co-author Jean Vettel, Ph.D., a senior science lead at ARL who is also affiliated with the University of Pennsylvania and University of California, Santa Barbara, "and this means that systems have to be designed for the most general skills across Soldiers. As exemplified in this work, ARL research strives to find new approaches to robustly quantify differences among Soldiers in a way that would allow development of individualized systems to capitalize on the unique expertise of each Soldier."

In both medical treatment and task performance, understanding individuals' brains—as opposed to the human brain in general—could have benefits, the authors say. This is because variations in the architecture and function of the may influence how the organ responds to neurostimulation, leading to different results for different people.

Explore further: Scientists discover how brain signals travel to drive language performance

More information: Kanika Bansal et al, Data-driven brain network models differentiate variability across language tasks, PLOS Computational Biology (2018). DOI: 10.1371/journal.pcbi.1006487

Related Stories

Scientists discover how brain signals travel to drive language performance

June 21, 2018
Effective verbal communication depends on one's ability to retrieve and select the appropriate words to convey an intended meaning. For many, this process is instinctive, but for someone who has suffered a stroke or another ...

New computational tool could help optimize treatment of Alzheimer's disease

May 24, 2018
Scientists have developed a novel computational approach that incorporates individual patients' brain activity to calculate optimal, personalized brain stimulation treatment for Alzheimer's disease. Lazaro Sanchez-Rodriguez ...

Virtual brain could aid surgical planning

May 29, 2018
Researchers have simulated neural activity based on the unique structural architecture of individual brain tumor patients using a platform called The Virtual Brain. The findings, reported in eNeuro, are a first step toward ...

New study describes what happens when the brain is artificially stimulated

September 26, 2016
Stimulating the brain via electricity or other means may help to ease the symptoms of various neurological and psychiatric disorders, with the method already being used to treat conditions from epilepsy to depression.

Brain activity at rest provides clue to intelligence

March 7, 2018
The ability of an adult to learn and to perform cognitive tests is directly linked to how active the brain is at rest, UNSW researchers have found.

Personalizing therapeutic brain stimulation

May 21, 2018
A study of epilepsy patients with implanted electrodes provides an unprecedented view of the changes in brain activity created by electrical stimulation. These findings, published in JNeurosci, have the potential to improve ...

Recommended for you

Neuroimaging study reveals 'hot spot' for cue-reactivity in substance-dependent population

November 20, 2018
When patients with dependence on alcohol, cocaine or nicotine are shown drug cues, or images related to the substance, an area of their brain known as the medial prefrontal cortex (mPFC) shows increased activity, report investigators ...

When storing memories, brain prioritizes those experiences that are most rewarding

November 20, 2018
The brain's ability to preserve memories lies at the heart of our basic human experience. But how does the brain's mechanism for memory make sure we remember the most significant events and not clog our minds with superfluous ...

To predict the future, the brain has two clocks

November 20, 2018
That moment when you step on the gas pedal a split second before the light changes, or when you tap your toes even before the first piano note of Camila Cabello's "Havana" is struck. That's anticipatory timing.

Researchers hope to be able to replace dysfunctional brain cells

November 20, 2018
A new study by researchers at Karolinska Institutet supports the theory that replacement of dysfunctional immune cells in the brain has therapeutic potential for neurodegenerative diseases like ALS and Alzheimer's disease. ...

White matter pathway and individual variability in human stereoacuity

November 20, 2018
Researchers in the Center for Information and Neural Networks (CiNet), the National Institute of Information and Communications Technology and Osaka University have identified a human white matter pathway associated with ...

Can genetic therapy help kids with Angelman syndrome overcome seizures?

November 20, 2018
Angelman syndrome is a genetic disease with no cure. Children grow up with severe intellectual disabilities and a range of other problems, arguably the worst of which are epileptic seizures. Now scientists at the UNC School ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.