Mutation associated with als causes sugar-starved cells to overproduce lipids, study shows

October 30, 2018, Johns Hopkins University Bloomberg School of Public Health

A genetic defect tied to a variety of neurodegenerative diseases and mental illnesses changes how cells starved of sugar metabolize fatty compounds known as lipids, a new study led by researchers from the Johns Hopkins Bloomberg School of Public Health shows. The finding could lead to new targets to treat these diseases, which currently have no cure or fully effective treatments.

Taken together, these results suggest that the , mutations in a gene called C9orf72, lead to greater amounts of a protein that causes to overproduce lipids and an enzyme called NOX2. The enzyme NOX2, which is known to cause oxidative stress that can damage cells, has also been shown to be elevated in patients with amyotrophic lateral sclerosis (ALS) and .

The findings were published online Oct. 26 in the journal Genes & Development.

"Cells with this mutation act as if they're chronically under stress, which could underlie the pathology of diseases associated with this defect," says Jiou Wang, MD, Ph.D., an associate professor in the Bloomberg School's Department of Biochemistry and Molecular Biology. "Our study raises the question of whether we should be looking at problems with metabolism as a potential cause for these diseases."

Researchers identified the mutation in the C9orf72 gene several years ago, and it has since been associated with ALS, frontotemporal dementia, Alzheimer's disease and bipolar disorder, and other neurologic diseases. Although researchers have known that this mutation decreases the amount of the protein coded by the C9orf72 gene in cells, it was unknown exactly what this C9orf72-coded protein does.

To learn its function, the researchers created in which C9orf72 was effectively removed, preventing the production of its protein in order to study what happens in cells naturally carrying the gene's mutated form. They then compared these cells to those with the gene, looking broadly at the levels of all proteins produced in both types of cells. They studied these protein levels both under normal conditions as well as when the cells lived in environments devoid of the sugar known as glucose, an important cellular energy source. Previous studies have hinted, Wang explains, that C9orf72 might play a role in how cells protect themselves from nutrient starvation stress.

When are deprived of glucose, Wang says, they tend to make and store more lipid droplets. However, the researchers' protein level analysis showed that when deprived of glucose, the cells lacking the C9orf72 protein produced significantly more lipid metabolism-related proteins compared to cells with this gene. When the researchers compared the number of lipid droplets between the two types of cells in glucose-devoid conditions, the cells lacking C9orf72 protein held significantly more. They also had more free fatty acids, the individual components that come together to form these lipid droplets.

To better understand why lipids increased in cells without the C9orf72 gene, the researchers looked at the two different pathways that cells use to create : either creating them from scratch, a process called de novo lipid biogenesis, or by digesting other components of the cell to make lipids, a process called autophagy. They found higher amounts of the proteins associated with both routes in cells without the C9orf72 gene, suggesting that each lipid-producing pathway was abnormally regulated.

Digging even deeper to find out how cells without C9orf72 boosted both pathways, they did another protein analysis to find which proteins are associated with C9orf72. Their search led them to CARM1, a protein known to broadly affect which produce proteins, and how much. It turns out that C9orf72 is important for a previously unknown pathway to degrade the CARM1 by the lysosome, the cell's digestive organelle. Further investigation showed that in C9orf72 knockout cells, CARM1 levels increase, leading to greater expression of genes related to lipid production.

To see if these results translate to what happens in patients with C9orf72 mutations, the researchers studied cells and tissues from patients with ALS and frontotemporal dementia. Starving these samples of glucose led to the same results they saw in the mouse-derived cells: increased lipid levels caused by dysregulation of both lipid-producing pathways, along with increased levels of CARM1 and NOX2.

Taken together, Wang says, these results suggest that mutations in C9orf72 lead to greater amounts of CARM1, which causes cells to overproduce lipids and NOX2 in response to glucose starvation.

"As we learn more about this newly discovered biological pathway," says Wang, "it could lead to new therapeutic interventions that protect cells that carry this mutation from harm."

Explore further: Normal function of ALS and dementia linked gene determined for the first time

More information: Yang Liu et al, A C9orf72–CARM1 axis regulates lipid metabolism under glucose starvation-induced nutrient stress, Genes & Development (2018). DOI: 10.1101/gad.315564.118

Related Stories

Normal function of ALS and dementia linked gene determined for the first time

October 24, 2018
The normal function of a gene associated with the neurodegenerative diseases amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) has been determined for the first time by University of Bath scientists.

The toxic relationship between ALS and frontotemporal dementia

February 5, 2018
ALS and frontotemporal dementia (FTD) are two neurodegenerative diseases with a toxic relationship, according to a new USC Stem Cell study published in Nature Medicine.

New insight into the most common genetic cause of ALS and FTD

June 30, 2016
Scientists from the University of Sheffield have discovered a novel function of the C9orf72 protein which is linked to amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) - giving a new insight into the ...

New areas of the brain identified where ALS-implicated gene is active

August 1, 2016
For the first time novel expression sites in the brain have been identified for a gene which is associated with motor neuron disease and frontotemporal dementia.

Gene loss can lead to accumulation of waste products in cells

May 7, 2018
MIT biologists have discovered a function of a gene that is believed to account for up to 40 percent of all familial cases of amyotrophic lateral sclerosis (ALS). Studies of ALS patients have shown that an abnormally expanded ...

Uncovering a key relationship in ALS

July 15, 2015
A University of Toronto research team has discovered new details about a key gene involved in ALS, perhaps humanity's most puzzling, intractable disease.

Recommended for you

Newborn babies' brain responses to being touched on the face measured for the first time

November 16, 2018
A newborn baby's brain responds to being touched on the face, according to new research co-led by UCL.

Precision neuroengineering enables reproduction of complex brain-like functions in vitro

November 14, 2018
One of the most important and surprising traits of the brain is its ability to dynamically reconfigure the connections to process and respond properly to stimuli. Researchers from Tohoku University (Sendai, Japan) and the ...

New brain imaging research shows that when we expect something to hurt it does, even if the stimulus isn't so painful

November 14, 2018
Expect a shot to hurt and it probably will, even if the needle poke isn't really so painful. Brace for a second shot and you'll likely flinch again, even though—second time around—you should know better.

A 15-minute scan could help diagnose brain damage in newborns

November 14, 2018
A 15-minute scan could help diagnose brain damage in babies up to two years earlier than current methods.

New clues to the origin and progression of multiple sclerosis

November 13, 2018
Mapping of a certain group of cells, known as oligodendrocytes, in the central nervous system of a mouse model of multiple sclerosis (MS), shows that they might have a significant role in the development of the disease. The ...

Mutations, CRISPR, and the biology behind movement disorders

November 12, 2018
Scientists at the RIKEN Center for Brain Science (CBS) in Japan have discovered how mutations related to a group of movement disorders produce their effects. Published in Proceedings of the National Academy of Sciences, the ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.