Proposed cancer treatment may boost lung cancer stem cells, study warns

November 20, 2018, Children's Hospital Boston
cancer
Killer T cells surround a cancer cell. Credit: NIH

Epigenetic therapies—targeting enzymes that alter what genes are turned on or off in a cell—are of growing interest in the cancer field as a way of making a cancer less aggressive or less malignant. Researchers at Boston Children's Hospital now report that at least one epigenetic therapy that initially looked promising for lung cancer actually has the opposite effect, boosting cancer stem cells that are believed to drive tumors. They also identify a strategy that reduces these cells, curbing lung cancer in mice.

Findings were published online today in Nature Communications.

Cancer stem have been identified in blood cancers and a variety of solid tumors. They make up a tiny fraction of tumor cells, but can regenerate a cancer on their own. Carla Kim, Ph.D., and colleagues in Boston Children's Hospital's Stem Cell Research program have shown that play a role in adenocarcinoma, the most common type of lung cancer. When they transplanted cancer stem cells from a diseased mouse, previously healthy mice developed .

The new study, led by lab member Samuel Rowbotham, Ph.D., looked at an epigenetic therapy that inhibits the enzyme G9a, a type of histone methyltransferase. G9a had been thought to be cancer-promoting, and some studies have suggested that inhibiting G9a is an effective strategy in certain cancers, including adenocarcinoma. Rowbotham and Kim now call this into question.

"People had looked at from lung tumors and found that they are sensitive to drugs inhibiting G9a," says Rowbotham, first author on the paper. "In general tumor cell populations, these drugs would slow down growth or even kill the cells. But we found that these drugs were also making the surviving tumor cells more stem-like. We predicted that this would advance disease progression, and this is what we saw."

The team first looked at adenocarcinoma cell lines and found that when the cells were treated with G9a, they became more like stem cells. They then transplanted cancer stem cells into live mice and tracked the development of adenocarcinoma. When they knocked down the G9a gene in lung tumors, the tumors grew bigger and spread farther.

Kim believes this down side to G9a hadn't been noticed because prior studies only looked at cell lines, and because cancer stem cells are hard to detect.

"Earlier studies couldn't see that cancer stem cells were still around, and there's more of them when you treat with these drugs," she says. "Because they're such a small fraction of the tumor, anything that affects them can easily be missed."

A new epigenetic target?

But Rowbotham, Kim and colleagues also found potentially better enzymes to target: Histone demethylases. Their action is chemically opposite to that of G9a, stripping off a methyl group from histone where G9a adds one. When Rowbotham knocked down the gene for demethylase enzymes, and added drug that prevents them from working, he was able to make the cells look less like cancer stem cells in a dish and behave less like cancer stem cells in live mice. When he gave demethylase inhibitors to mice with established lung tumors, cancer progression was slowed and the animals survived longer than untreated mice.

Although a cancer stem cell hasn't been found in human adenocarcinoma, Kim believes the findings are worth pursuing further. She notes a related line of evidence—a 2017 study that found that demethylase inhibitors were effective in killing chemotherapy-resistant cells from patient tumors.

"Even if we can't pinpoint cancer stem cells in human patients, Sam's work shows you can start by studying a cancer stem cell in a mouse model and identify targets that could be clinically important," she says. "It shows the importance of finding the right molecule the cancer is sensitive to. In adenocarcinoma, a demethylase inhibitor is likelier to be more useful than methyltransferase inhibitor."

They and others envision a two-phase strategy for adenocarcinoma that would first target the general population of cancer cells to "debulk" the , then add a second treatment specifically directed at stem cells.

The team is now doing further studies to explore demethylase inhibitors as potential therapeutic drugs, alone or in combination with other treatments. Because demethylase inhibitors have very broad effects, they will also look for genes the inhibitors affect downstream, which could provide more specific drug targets.

Explore further: Biologists identify key step in lung cancer evolution

Related Stories

Biologists identify key step in lung cancer evolution

May 10, 2017
Lung adenocarcinoma, an aggressive form of cancer that accounts for about 40 percent of U.S. lung cancer cases, is believed to arise from benign tumors known as adenomas.

ONC201 may inhibit cancer stem cell self-renewals by altering their gene expression

August 2, 2017
ONC201 may inhibit cancer stem cell self-renewals by altering their gene expression, according to a study published August 2, 2017 in the open-access journal PLOS ONE by Varun Vijay Prabhu from Oncoceutics, Inc., USA and ...

Drug combination shuts down cancer stem cells and tumor growth in aggressive lung cancer

March 14, 2016
Researchers on Mayo Clinic's Florida campus have shut down one of the most common and lethal forms of lung cancer by combining the rheumatoid arthritis drug auranofin with an experimental targeted agent.

New inhibitor brings new hope

September 14, 2017
Scientists from the cluster of excellence BIOSS Centre for Biological Signalling Studies at the University of Freiburg and the Freiburg University Medical Center have shown that inhibiting the epigenetic regulator KDM4 might ...

Recommended for you

Potential seen for tailoring treatment for acute myeloid leukemia

December 8, 2018
Advances in rapid screening of leukemia cells for drug susceptibility and resistance are bringing scientists closer to patient-tailored treatment for acute myeloid leukemia (AML).

Study may offer doctors a more effective way to treat neuroblastoma

December 7, 2018
A very large team of researchers, mostly from multiple institutions across Germany, has found what might be a better way to treat patients with neuroblastoma, a type of cancer. In their paper published in the journal Science, ...

Major breakthrough in quest for cancer vaccine

December 6, 2018
The idea of a cancer vaccine is something researchers have been working on for over 50 years, but until recently they were never able to prove exactly how such a vaccine would work.

'Chemo brain' caused by malfunction in three types of brain cells, study finds

December 6, 2018
More than half of cancer survivors suffer from cognitive impairment from chemotherapy that lingers for months or years after the cancer is gone. In a new study explaining the cellular mechanisms behind this condition, scientists ...

Scientists develop new technology for profiling unique genetic makeup of myeloma tumor cells

December 6, 2018
Cancer arises when cells lose control. Deciphering the "blueprint" of cancer cells—outlining how cancer cells hijack specific pathways for uncontrolled proliferation—will lead to more efficient ways to fight it. Joint ...

Putting the brakes on tumor stealth

December 6, 2018
New research undertaken at Monash University has shed new light on how some cancers are able to escape our immune system.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.