New clues to the origin and progression of multiple sclerosis

November 13, 2018, Karolinska Institutet
Demyelination by MS. The CD68 colored tissue shows several macrophages in the area of the lesion. Original scale 1:100. Credit: Marvin 101/Wikipedia

Mapping of a certain group of cells, known as oligodendrocytes, in the central nervous system of a mouse model of multiple sclerosis (MS), shows that they might have a significant role in the development of the disease. The discovery can lead to new therapies targeted at other areas than just the immune system. The results are published in Nature Medicine by researchers at Karolinska Institutet in Sweden.

Two and a half million people around the world live with MS, including approximately 18,000 people in Sweden, and about 1,000 new cases annually. MS develops when the immune system's attack the insulating fatty substance known as myelin that coats nerve fibres in the central nervous system. This interferes with the proper transmission of nerve electric signals and causes the symptoms of the disease. While it is unknown why the immune system attacks the myelin, a study by researchers at Karolinska Institutet shows that the cells that produce myelin, oligodendrocytes, might play an unexpected role. Oligodendrocytes are one of the most common types of cell in the brain and .

"Our study provides a new perspective on how might emerge and evolve," says Gonçalo Castelo-Branco, associate professor at the Department of Medical Biochemistry and Biophysics, Karolinska Institutet. "Current treatments mainly focus on inhibiting the immune system. But we can now show that the of the immune system in the brain and spinal cord, oligodendrocytes, acquire new properties during disease and might have a higher impact on the disease than previously thought."

The researchers have shown that a subset of oligodendrocytes and their progenitor cells have much in common with the immune cells, in a of MS. Among other properties, they can take part in the clearing away of the myelin that is damaged by the disease, in a way that resembles how immune cells operate. Oligodendrocyte can also communicate with the and make them change their behaviour.

"We also see that some genes that have been identified as those that cause a susceptibility to MS are active (expressed) in oligodendrocytes and their progenitors," says Ana Mendanha Falcão, joint first author of the study with David van Bruggen, both at the Department of Medical Biochemistry and Biophysics at Karolinska Institutet.

"All in all, this suggests that these cells have a significant role to play either in the onset of the disease or in the disease process," says David van Bruggen.

The study was conducted using the recently developed technique, single-cell RNA sequencing, which provides scientists with a snapshot of the genetic activity of single cells and therefore with a much more effective means of differentiating the properties of individual cells. This has made it possible for researchers to identify the various roles and functions of the different cells.

Although the study was largely conducted on mice, some of the results have also been observed in human samples.

"We will now continue with further studies to ascertain the part played by the oligodendrocytes and their progenitor in MS," says Gonçalo Castelo-Branco. "Further knowledge can eventually lead the way to the development of new treatments for the disease."

Explore further: Nerve-insulating cells more diverse than previously thought

More information: Ana Mendanha Falcão et al, Disease-specific oligodendrocyte lineage cells arise in multiple sclerosis, Nature Medicine (2018). DOI: 10.1038/s41591-018-0236-y

Related Stories

Nerve-insulating cells more diverse than previously thought

June 9, 2016
Oligodendrocytes, a type of brain cell that plays a crucial role in diseases such as multiple sclerosis, are more diverse than have previously been thought, according to a new study by researchers at Karolinska Institutet ...

Researchers report novel complementary effects of estrogen treatment in multiple sclerosis

December 28, 2017
A study by UCLA researchers reveals the cellular basis for how the hormone estrogen protects against damage to the central nervous system in people with multiple sclerosis (MS). The researchers found that estrogen treatment ...

New disease model to facilitate development of ALS and MS therapies

April 17, 2018
Researchers at Karolinska Institutet in Sweden have developed a new disease model for neurodegenerative diseases such as ALS and MS that can be used to develop new immunotherapies. The model is described in a publication ...

New knowledge about the human brain's plasticity

November 6, 2014
The brain's plasticity and its adaptability to new situations do not function the way researchers previously thought, according to a new study published in the journal Cell. Earlier theories are based on laboratory animals, ...

Recommended for you

New genetic study could lead to better treatment of severe asthma

December 12, 2018
The largest-ever genetic study of people with moderate-to-severe asthma has revealed new insights into the underlying causes of the disease which could help improve its diagnosis and treatment.

Attention, please! Anticipation of touch takes focus, executive skills

December 12, 2018
Anticipation is often viewed as an emotional experience, an eager wait for something to happen.

Study highlights potential benefits of continuous EEG monitoring for infant patients

December 12, 2018
A recent retrospective study evaluating continuous electroencephalography (cEEG) of children in intensive care units (ICUs) found a higher than anticipated number of seizures. The work also identified several conditions closely ...

The importins of anxiety

December 11, 2018
According to some estimates, up to one in three people around the world may experience severe anxiety in their lifetime. In a study described today in Cell Reports, researchers at the Weizmann Institute of Science have revealed ...

Researchers discover unique immune cell likely drives chronic inflammation

December 11, 2018
For the first time, researchers have identified that an immune cell subset called gamma delta T cells that may be causing and/or perpetuating the systemic inflammation found in normal aging in the general geriatric population ...

Macrophage cells key to helping heart repair—and potentially regenerate, new study finds

December 11, 2018
Scientists at the Peter Munk Cardiac Centre have identified the type of cell key to helping the heart repair and potentially regenerate following a heart attack.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.