Scientists decode mechanism of remembering—and forgetting

November 27, 2018, The Scripps Research Institute
Credit: CC0 Public Domain

It's a common expression to say that your brain is full. Although the brain doesn't literally fill up, in recent years researchers have discovered that the brain does sometimes push out old memories in order to take up new ones.

Now, a team at Scripps Research has shown for the first time the physiological mechanism by which a is formed and then subsequently forgotten. The research, which was done in , looked at the synaptic changes that occur during learning and forgetting. The investigators found that a single dopamine neuron can drive both the learning and forgetting . The study was published in Cell Reports.

"We believe this system is set up to remove memories that are unimportant and not necessarily supposed to last a long time," says first author Jacob Berry, Ph.D., a postdoctoral associate in the Department of Neuroscience on Scripps Research's Florida campus. "I find it elegant that all of this is done with the same neuron. Our paper highlights exactly how this is achieved."

To study memory in flies, the insects are conditioned to associate a particular odor with an electric shock. Once they've been trained, scientists observe that they subsequently avoid that odor, which confirms that the memory has been made. By monitoring the activity of neurons in the brain before and after the conditioning process, scientists can get an inside look at the physiological underpinnings of memory formation.

In earlier work, the Scripps Research team showed that there are specific dopaminergic circuits that are involved in both the formation of memory and the removal of memories. In the current study, the investigators used imaging techniques to look at the process in more detail. They discovered that when a behavioral memory is degraded, the cellular changes made during the learning process are reversed by the same dopamine neuron that helped form the changes in the first place.

The researchers also found that when this dopamine neuron is recruited to form a new memory, it also works to degrade older memories. "Whenever you learn something new, you're simultaneously forming a new memory while potentially interfering with or erasing old ones," Berry says. "It's a very important balancing act that prevents you from becoming overloaded."

"For decades now, neuroscientists studying learning and memory have focused on how the brain acquires information and how that information is made to be stable memory, a process called memory consolidation," says first author Ron Davis, Ph.D., a professor and chair of the Department of Neuroscience at Scripps Research. "Only recently have neuroscientists grasped the importance of active forgetting and begun to unravel the processes that causes the brain to forget."

Berry adds that this learning-and-forgetting process helps to explain retroactive interference, a common observation in psychology. Retroactive interference describes the situation when more recent information gets in the way of trying to recall older information—for example, calling your former boss by your current boss's name.

Although the research was done in fruit flies, the investigators expect that the findings will apply to higher organisms, including humans. "Evolution worked out a lot of important processes like this pretty early on," Berry says, "so there's a lot of relevance to studying these synaptic pathways in simpler organisms."

"The study led by Berry not only provides new insights into the brain mechanisms for active forgetting but offers a wonderful example of how much we learn about function from laboratory animals like the fruit fly, Drosophila," Davis adds.

Understanding the processes of both remembering and forgetting—and potentially how to manipulate them—has a number of implications for humans. For conditions like drug addiction or post-traumatic stress disorder, it may be beneficial to develop approaches that can boost active forgetting. Improving memory retention, on the other hand, could help to treat dementia and other forms of memory loss.

Explore further: Scientists identify neurotranmitters that lead to forgetting

More information: Jacob A. Berry et al, Dopamine Neurons Mediate Learning and Forgetting through Bidirectional Modulation of a Memory Trace, Cell Reports (2018). DOI: 10.1016/j.celrep.2018.09.051

Related Stories

Scientists identify neurotranmitters that lead to forgetting

May 9, 2012
While we often think of memory as a way of preserving the essential idea of who we are, little thought is given to the importance of forgetting to our wellbeing, whether what we forget belongs in the "horrible memories department" ...

Study unites neuroscience and psychology to paint more complete picture of sleep and memory

June 11, 2015
In Macbeth, Shakespeare describes sleep as "the death of each day's life," but he may have gotten it wrong. Sleep, as it turns out, may be the one thing that keeps our memories alive and intact.

To forget or to remember? Memory depends on subtle brain signals, scientists find

November 22, 2017
The fragrance of hot pumpkin pie can bring back pleasant memories of holidays past, while the scent of an antiseptic hospital room may cause a shudder. The power of odors to activate memories both pleasing and aversive exists ...

Scientists discover a new protein crucial to normal forgetting

June 2, 2016
When Elvis released his first number-one country hit "I Forgot to Remember to Forget" in 1955, the song was more correct scientifically than he could have imagined. Humans need to forget as part of the brain's system for ...

Scientists find a defect responsible for memory impairment in aging

March 3, 2015
Scientists from the Florida campus of The Scripps Research Institute have discovered a mechanism that causes long-term memory loss due to age in Drosophila, the common fruit fly, a widely recognized substitute for human memory ...

Brain study reveals how long-term memories are erased

March 31, 2016
Vital clues about how the brain erases long term memories have been uncovered by researchers.

Recommended for you

Attention, please! Anticipation of touch takes focus, executive skills

December 12, 2018
Anticipation is often viewed as an emotional experience, an eager wait for something to happen.

Study highlights potential benefits of continuous EEG monitoring for infant patients

December 12, 2018
A recent retrospective study evaluating continuous electroencephalography (cEEG) of children in intensive care units (ICUs) found a higher than anticipated number of seizures. The work also identified several conditions closely ...

The importins of anxiety

December 11, 2018
According to some estimates, up to one in three people around the world may experience severe anxiety in their lifetime. In a study described today in Cell Reports, researchers at the Weizmann Institute of Science have revealed ...

How returning to a prior context briefly heightens memory recall

December 11, 2018
Whether it's the pleasant experience of returning to one's childhood home over the holidays or the unease of revisiting a site that proved unpleasant, we often find that when we return to a context where an episode first ...

Neurons in the brain work as a team to guide movement of arms, hands

December 11, 2018
The apparent simplicity of picking up a cup of coffee or turning a doorknob belies the complex sequence of calculations and processes that the brain must undergo to identify the location of an item in space, move the arm ...

Using neurofeedback to prevent PTSD in soldiers

December 11, 2018
A team of researchers from Israel, the U.S. and the U.K. has found that using neurofeedback could prevent soldiers from experiencing PTSD after engaging in emotionally difficult situations. In their paper published in the ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.