Protein from the liver may cause Alzheimer's disease in the brain

Protein from the liver may cause Alzheimer’s disease in the brain
Hippocampal dentate gyrus in HSHA mice, showing significant astrocyte activation (GFAP: white) and oxidative stress (8OHdG: green) surrounding the cerebral capillaries (laminin-a4: magenta). Nuclei staining with DAPI (blue). Credit: John Charles Louis Mamo, Lam V et al., 2021, PLOS Biology, CC BY 4.0 (creativecommons.org/licenses/by/4.0/)

Amyloid protein made in the liver can cause neurodegeneration in the brain, according to a new study in the open-access journal PLOS Biology, by John Mamo of Curtin University in Bentley, Australia, and colleagues. Since the protein is thought to be a key contributor to development of Alzheimer's disease (AD), the results suggest that the liver may play an important role in the onset or progression of the disease.

Deposits of amyloid-beta (A-beta) in the brain are one of the pathological hallmarks of AD and are implicated in neurodegeneration in both and animal models of the . But A-beta is also present in periphereral organs, and blood levels of A-beta correlate with cerebral amyloid burden and , raising the possibility that peripherally produced a-beta may contribute to the disease. Testing that hypothesis has been difficult, since the brain also produces A-beta, and distinguishing protein from the two sources is challenging.

In the current study, the authors surmounted that challenge by developing a mouse that produces human a-beta only in liver cells. They showed that the protein was carried in the blood by triglyceride-rich lipoproteins, just as it is in humans, and passed from the periphery into the brain. They found that mice developed neurodegeneration and brain atrophy, which was accompanied by neurovascular inflammation and dysfunction of cerebral capillaries, both commonly observed with Alzheimer's disease. Affected mice performed poorly on a learning test that depends on function of the hippocampus, the that is essential for the formation of new memories.

The findings from this study indicate that peripherally derived A-beta has the ability to cause neurodegeneration and suggest that A-beta made in the liver is a potential contributor to human disease. If that contribution is significant, the findings may have major implications for understanding Alzheimer's disease. To date, most models of the disease have focused on brain overproduction of A-beta, which mimics the rare genetic cases of human Alzheimer's. But for the vast majority of AD cases, overproduction of A-beta in the brain is not thought to be central to the disease etiology. Instead, lifestyle factors may play a more important role, including a , which might accelerate liver production of A-beta.

The effects of peripheral A-beta on capillaries may be critical in the disease process, Mamo adds. "While further studies are now needed, this finding shows the abundance of these toxic protein deposits in the blood could potentially be addressed through a person's diet and some drugs that could specifically target lipoprotein amyloid, therefore reducing their risk or slowing the progression of Alzheimer's disease."

More information: Lam V, Takechi R, Hackett MJ, Francis R, Bynevelt M, Celliers LM, et al. (2021) Synthesis of human amyloid restricted to liver results in an Alzheimer disease–like neurodegenerative phenotype. PLoS Biol 19(9): e3001358. doi.org/10.1371/journal.pbio.3001358

Journal information: PLoS Biology
Citation: Protein from the liver may cause Alzheimer's disease in the brain (2021, September 14) retrieved 28 April 2024 from https://medicalxpress.com/news/2021-09-protein-liver-alzheimer-disease-brain.html
This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no part may be reproduced without the written permission. The content is provided for information purposes only.

Explore further

Alzheimer's disease may start inside nerve cells

364 shares

Feedback to editors