Intestine crucial to function of immune cells, research shows

December 12, 2011

Researchers at the University of Toronto have found an explanation for how the intestinal tract influences a key component of the immune system to prevent infection, offering a potential clue to the cause of autoimmune disorders like rheumatoid arthritis and multiple sclerosis.

"The findings shed light on the complex balance between beneficial and in the gut," said Prof. Jennifer Gommerman, an Associate Professor in the Department of Immunology at U of T, whose findings were published online by the scientific journal, Nature. "There has been a long-standing mystery of how certain cells can differentiate between and attack harmful bacteria in the without damaging and other necessary cells. Our research is working to solve it."

The researchers found that some —a type of white blood cell that produces antibodies—acquire functions that allow them to neutralize pathogens only while spending time in the gut. Moreover, this subset of B cells is critical to health.

"When we got rid of that B-cell function, the host was unable to clear a gut pathogen and there were other negative outcomes, so it appears to be very important for the cells to adopt this function in the gut," said Prof. Gommerman, whose lab conducted the research in mice.

Textbook —based mostly on research done in the spleen, lymph nodes or other sterile sites distant from gut microbes—has suggested that B cells develop a specific immune function and rigidly maintain that identity. Over the last few years, however, some labs have shown the microbe-rich environment of the gut can induce flexibility in immune cell identity.

Prof. Gommerman and her colleagues, including trainees from her lab Drs. Jörg Fritz, Olga Rojas and Doug McCarthy, found that as B cells differentiate into plasma cells in the gut, they adopt characteristics of innate immune cells—despite their traditional association with the adaptive . Specifically, they begin to look and act like inflammatory cells called monocytes, while maintaining their ability to produce a key antibody called Immunoglobulin A.

"What intrigued us was that this theme—B cells behaving like monocytes—had been seen before in fish and in vitro. But now we have a living example in a mammalian system, where this kind of bipotentiality is realized," said Prof. Gommerman.

This B-cell plasticity provides a potential explanation how cells dedicated to controlling pathogens can respond to a large burden of harmful bacteria without damaging beneficial bacteria and other cells essential for proper function of the intestine.

It also may explain how scientists had failed to appreciate the multi-functionality of some B cells. "There are classical markers immunologists use to identify B cells—receptors that are displayed on their surface—and most of them are absent from plasma cells," said Prof. Gommerman. "So in some cases, what people thought was a monocyte could have been a plasma cell because it had changed its surface identity, although monocytes play an important role in innate immunity as well."

This transformational ability, the researchers also found, is dependent on bacteria called commensal microflora that digests food and provides nutrients. That relationship highlights the importance of the gut in fighting infection, and begs the question of whether plasma cells trained in the gut to secrete specific anti-microbial molecules can play a role in other infectious disease scenarios, such as food-borne listeria infection.

It also opens a line of investigation into whether a systemic relationship exists between those anti-microbial molecules and healthy cells in sites remote from the intestine. Understanding the nature of that relationship could improve understanding of inflammatory mechanisms in such as lupus, and , in which immune cells attack and eventually destroy healthy tissue.

But the next step, said Prof. Gommerman, is to look at human samples for the same type of multi-potentiality they saw in rodent plasma cells that acquired their anti-microbial properties in the gut.

"We're really at the early stages of understanding what we call the microbiome in the gut," said Prof. Gommerman. "There is a role for plasma cells in many autoimmune diseases, and B can do a lot more than just make antibodies. We need to understand the full spectrum of their effects within the immune response."

Explore further: Friend or Foe? Scientists Determine How the Intestine Keeps Us Safe From Microbial Invaders

Related Stories

Learning to tolerate our microbial self

April 21, 2011

(PhysOrg.com) -- The human gut is filled with 100 trillion symbiotic bacteria—ten times more microbial cells than our own cells—representing close to one thousand different species. "And yet, if you were to eat ...

Bacteria enter via mucus-making gut cells

October 3, 2011

Cells making slippery mucus provide a sticking point for disease-causing bacteria in the gut, according to a study published on October 3 in the Journal of Experimental Medicine.

Scientists discover immune peacekeepers

October 17, 2011

There are more bacteria living on our skin and in our gut than cells in our body. We need them. But until now no-one knew how the immune system could tell that these bacteria are harmless.

Recommended for you

Basic research fuels advanced discovery

August 26, 2016

Clinical trials and translational medicine have certainly given people hope and rapid pathways to cures for some of mankind's most troublesome diseases, but now is not the time to overlook the power of basic research, says ...

New method creates endless supply of kidney precursor cells

August 25, 2016

Salk Institute scientists have discovered the holy grail of endless youthfulness—at least when it comes to one type of human kidney precursor cell. Previous attempts to maintain cultures of the so-called nephron progenitor ...

New avenue for understanding cause of common diseases

August 25, 2016

A ground-breaking Auckland study could lead to discoveries about many common diseases such as diabetes, cancer and dementia. The new finding could also illuminate the broader role of the enigmatic mitochondria in human development.

Strict diet combats rare progeria aging disorders

August 25, 2016

Mice with a severe aging disease live three times longer if they eat thirty percent less. Moreover, they age much healthier than mice that eat as much as they want. These are findings of a joint study being published today ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.