Prenatal intervention reduces learning deficit in mice

November 30, 2012

Mice with a condition that serves as a laboratory model for Down syndrome perform better on memory and learning tasks as adults if they were treated before birth with neuroprotective peptides, according to researchers at the National Institutes of Health.

Down syndrome results when an individual receives an extra copy of . According to the , Down syndrome occurs in 1 of every 691 births. Features of Down syndrome include delays in mental and physical development and poor muscle tone. These features may vary greatly, ranging from mild to severe.

The researchers studied growth factors that are important at certain key stages of in the womb. Named for the first three amino acids making up their , NAP and SAL, are small peptides (small protein sub units) of two proteins. These two proteins enhance the ability of to receive and transmit signals, and enable them to survive. (NAP is an abbreviation for NAPVSIPQ and SALfor SALLRSIPA.)

The mice in the study had an extra copy of mouse chromosome 16, which has mouse counterparts to 55 percent of the genes on 21.The researchers treated with NAP and SAL for five days, then tested the mouse offspring at 8 to 12 months of age, comparing them to mice treated with a saline solution (placebo). Mice with the extra chromosomal material that were treated with NAP and SAL in the womb learned as well as mice that did not have the extra chromosome, and significantly faster than mice with the that were treated with .

"Our study has provided important information that may help in the understanding of Down syndrome," said senior author Catherine Y. Spong, M.D., chief of the unit on perinatal and at the Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), the NIH institute where the research was conducted.

Dr. Spong collaborated with first author Maddalena Incerti, M.D., Kari Horowitz MD, Robin Roberson, Daniel Abebe, Laura Toso, M.D., and Madeline Caballero, all of the NICHD Unit on Perinatal and Developmental Neurobiology. Dr. Incerti also is affiliated with the University of Milano-Bicocca, Italy, and Dr. Horowitz now is affiliated with the University of Connecticut, Farmington.

Their findings appear online in PLOS ONE.

In an earlier study, Dr. Spong and her colleagues found that, if treated with NAP and SAL in the womb, mice with the extra copy of chromosome 16, achieved developmental milestones earlier than did mice with an extra copy of chromosome 16 that had not been treated. In that study, the researchers examined developmental milestones for sensory, motor skill, and muscle tone development in the first three weeks of life.

"In our earlier work, we showed that treating the mice during pregnancy could prevent developmental delay as assessed with milestones," Dr. Spong said. "In this study, we showed that treatment with NAP and SAL not only puts the animals on a typical developmental trajectory, it also improves their ability to learn.

For the current study, pregnant mice received injections of the two protein fragments starting eight days after conception. This is equivalent to the end of the first trimester in a human pregnancy.

The researchers tested the learning skills of the mice when the animals reached adulthood. The mice were placed in a tank of water on a clear platform. The tank had symbols on each wall that the mice could use to orient themselves. Researchers then placed the mice directly in the water and timed how long it took them to locate the platform. With repeated trials, the mice become more adept at the task and take less time to reach the platform.

Over five days of testing, the researchers found that the time spent searching for the platform decreased substantially for all groups except the mice with the extra copy of chromosome 16 that were not treated with NAP and SAL in the womb.

The research of Dr. Spong's team is part of an NIH-wide focus on Down syndrome outlined in a 2007 Down syndrome research plan. The plan highlights research priorities for the field, including establishing a Down syndrome patient registry, which was announced Oct. 25, 2012.

Explore further: Scientist discovers why drug boosts memory in Down syndrome mice

Related Stories

New evidence for genetic basis of autism found

October 3, 2011

Scientists at Cold Spring Harbor Laboratory (CSHL) have discovered that one of the most common genetic alterations in autism -- deletion of a 27-gene cluster on chromosome 16 -- causes autism-like features. By generating ...

Recommended for you

Natural compound reduces signs of aging in healthy mice

October 27, 2016

Much of human health hinges on how well the body manufactures and uses energy. For reasons that remain unclear, cells' ability to produce energy declines with age, prompting scientists to suspect that the steady loss of efficiency ...

A metabolic switch to turn off obesity

October 27, 2016

You've tried all the diets. No matter: you've still regained the weight you lost, even though you ate well and you exercised regularly! This may be due to a particular enzyme in the brain: the alpha/beta hydrolase domain-6 ...

Mitochondria control stem cell fate

October 27, 2016

What happens in intestinal epithelial cells during a chronic illness? Basic research conducted at the Chair of Nutrition and Immunology at the Technical University of Munich (TUM) addressed this question by generating a new ...

Scientists develop 'world-first' 3-D mammary gland model

October 27, 2016

A team of researchers from Cardiff University and Monash Biomedicine Discovery Institute has succeeded in creating a three-dimensional mammary gland model that will pave the way for a better understanding of the mechanisms ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.