Brain cells activated, reactivated in learning and memory

(Medical Xpress)—Memories are made of this, the song says. Now neuroscientists have for the first time shown individual mouse brain cells being switched on during learning and later reactivated during memory recall. The results are published Dec. 13 in the journal Current Biology.

We store episodic memories about events in our lives in a part of a brain called the hippocampus, said Brian Wiltgen, now an assistant professor at the Center for and Department of Psychology at the University of California, Davis. (Most of the work was conducted while Wiltgen was working at the University of Virginia.) In animals, the hippocampus is important for navigation and storing memories about places.

"The exciting part is that we are now in a position to answer a fundamental question about memory," Wiltgen said. "It's been assumed for a long time that the hippocampus is essential for memory because it drives reactivation of neurons (nerve cells) in the cortex. The reason you can remember an event from your life is because the hippocampus is able to recreate the pattern of cortical activity that was there at the time."

According to this model, patients with damage to the hippocampus lose their memories because they can't recreate the activity in the cortex from when the memory was made. Wiltgen's mouse experiment makes it possible to test this model for the first time.

"We can now do a nice test of hippocampal function," Wiltgen said.

Current thinking is that learning activates a group of neurons that undergo changes, making new connections with each other to store the memory. Retrieving the memory reactivates the network.

This video is not supported by your browser at this time.
Neuroscientist Brian Wiltgen of UC Davis photographed this slice of mouse brain showing cells being activated previously to form a memory in green. Freshly activated cells are stained red. This is the first time neuroscientists have shown individual mouse brain cells being switched on during learning and later reactivated during memory recall. Videography by Brian Wiltgen/UC Davis

Researchers working with human subjects, at UC Davis and elsewhere, use imaging techniques such as to see which areas of the brain are switched on and off in learning and retrieval. But cannot pick out an object as small as a single cell.

Wiltgen and University of Virginia graduate student Kaycie Tayler used a genetically modified mouse that carries a gene for a modified green fluorescent protein. When in the mouse are activated, they produce a long-lived green fluorescence that persists for weeks, as well as a short-lived red fluorescence that decays in a few hours.

However, the whole system can be suppressed by dosing the mouse with the antibiotic doxycycline, so Tayler and Wiltgen could manipulate the point at which they started tagging activated cells.

The mice were put into a new cage with an unfamiliar odor and given a few minutes to explore. Then they were given a mild electrical shock through the cage floor. When returned to the cage a couple of days later, the mice would remember the shock and stay frozen in one place.

When they examined the brains of the mice, the researchers could see which cells had been activated initially to form the memory and which were reactivated later to recall it.

About 40 percent of the cells in the hippocampus that were tagged during initial memory formation were reactivated, Wiltgen said. There was also reactivation of cells in parts of the brain cortex associated with place learning and in the amygdala, which is important for emotional .

There was no evidence of reactivation when the mice were tested in a new environment that they did not remember, Wiltgen said.

The researchers also looked at whether reactivation changed as memories got older. Over several weeks, reactivation in the and parts of the hippocampus remained stable, but it decreased in other brain regions like the amygdala.

In future work, Wiltgen's team plans to examine the role of the and other brain regions in forming memories and explore new ways to activate or block memories.

Other authors of the paper are Kazumasa Tanaka at the University of Virginia and Leon Reijmers at Tufts University School of Medicine. The work was supported by the McKnight Foundation, the National Science Foundation and the Nakajima Foundation.

Related Stories

Where unconscious memories form

Dec 15, 2010

A small area deep in the brain called the perirhinal cortex is critical for forming unconscious conceptual memories, researchers at the UC Davis Center for Mind and Brain have found.

Learning left from right

Dec 21, 2011

(Medical Xpress) -- Pop psychology assertions about left-brain/right-brain differences are pretty much tosh. Our personalities are not dominated by a battle between the creative skills residing in one half ...

Recommended for you

New ALS associated gene identified using innovative strategy

Oct 22, 2014

Using an innovative exome sequencing strategy, a team of international scientists led by John Landers, PhD, at the University of Massachusetts Medical School has shown that TUBA4A, the gene encoding the Tubulin Alpha 4A protein, ...

Can bariatric surgery lead to severe headache?

Oct 22, 2014

Bariatric surgery may be a risk factor for a condition that causes severe headaches, according to a study published in the October 22, 2014, online issue of Neurology, the medical journal of the American Academy of Neurol ...

Bipolar disorder discovery at the nano level

Oct 22, 2014

A nano-sized discovery by Northwestern Medicine scientists helps explain how bipolar disorder affects the brain and could one day lead to new drug therapies to treat the mental illness.

User comments