MS research could help repair damage affecting nerves

Multiple sclerosis treatments that repair damage to the brain could be developed thanks to new research.

A study has shed light on how cells are able to regenerate protective sheaths around in the brain.

These sheaths, made up of a substance called myelin, are critical for the quick transmission of , enabling vision, sensation and movement, but break down in patients with (MS).

The study, by the Universities of Edinburgh and Cambridge, found that , known as macrophages, help trigger the regeneration of myelin.

Researchers found that following loss of or damage to myelin, can release a compound called activin-A, which activates production of more myelin.

Dr Veronique Miron, of the Medical Research Council Centre for Regenerative Medicine at the University of Edinburgh, said: "In multiple sclerosis patients, the protective layer surrounding nerve fibres is stripped away and the nerves are exposed and damaged.

"Approved therapies for multiple sclerosis work by reducing the initial myelin injury – they do not promote myelin regeneration. This study could help find new to enhance myelin regeneration and help to restore lost function in patients with multiple sclerosis."

The study, which looked at myelin regeneration in human tissue samples and in mice, is published in Nature Neuroscience and was funded by the MS Society, the Wellcome Trust and the Multiple Sclerosis Society of Canada.

Scientists now plan to start further research to look at how activin-A works and whether its effects can be enhanced.

Dr Susan Kohlhaas, Head of Biomedical Research at the MS Society, said: "We urgently need therapies that can help slow the progression of MS and so we're delighted researchers have identified a new, potential way to repair damage to myelin. We look forward to seeing this research develop further."

Dr Karen Lee, Vice-President, Research at the MS Society of Canada, said: "We are pleased to fund MS research that may lead to treatment benefits for people living with MS. We look forward to advances in treatments that address repair specifically, so that people with MS may be able to manage the unpredictable symptoms of the disease."

More information: Nature Neuroscience DOI: 10.1038/nn.3469

Related Stories

Recommended for you

Breathless: How blood-oxygen levels regulate air intake

date 1 hour ago

Researchers have unraveled the elusive process by which small, highly vascular clusters of sensory cells in the carotid arteries "taste the blood," as a 1926 essay put it—the initial step in regulating ...

Sex matters ... even for liver cells

date 2 hours ago

Female liver cells, and in particular those in menopaused women, are more susceptible to adverse effects of drugs than their male counterparts, according to new research carried out by the JRC. It is well ...

Caring for blindness: A new protein in sight?

date 3 hours ago

Vasoproliferative ocular diseases are responsible for sight loss in millions of people in the industrialised countries. Many patients do not currently respond to the treatment offered, which targets a specific ...

When genes are expressed in reverse

date 3 hours ago

Genes usually always be expressed as in Western writing: from left to right on the white canvas of our DNA. So when we speak of the activity of our genome, in fact we are referring to the expression of genes ...

Technique could speed biologic drugs

date 8 hours ago

Antibodies are specific molecules that can lock onto a particular cellular structure to start, stop or otherwise temper a biological process. Because they are so specific, antibodies are at the forefront ...

User comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.