Researchers identify gene that helps fruit flies go to sleep

March 13, 2014

In a series of experiments sparked by fruit flies that couldn't sleep, Johns Hopkins researchers say they have identified a mutant gene—dubbed "Wide Awake"—that sabotages how the biological clock sets the timing for sleep. The finding also led them to the protein made by a normal copy of the gene that promotes sleep early in the night and properly regulates sleep cycles.

Because genes and the proteins they code for are often highly conserved across species, the researchers suspect their discoveries—boosted by preliminary studies in mice—could lead to new treatments for people whose insomnia or off-hours work schedules keep them awake long after their heads hit the pillow.

"We know that the timing of sleep is regulated by the body's internal , but just how this occurs has been a mystery," says study leader Mark N. Wu, M.D., Ph.D., an assistant professor of neurology, medicine, genetic medicine and neuroscience at the Johns Hopkins University School of Medicine. "We have now found the first protein ever identified that translates timing information from the body's and uses it to regulate sleep."

A report on the work appears online March 13 in the journal Neuron.

In their hunt for the molecular roots of sleep regulation, Wu and his colleagues studied thousands of fruit fly colonies, each with a different set of genetic mutations, and analyzed their . They found that one group of flies, with a mutation in the gene they would later call Wide Awake (or Wake for short), had trouble falling asleep at night, a malady that looked a lot like sleep-onset insomnia in humans. The investigators say Wake appears to be the messenger from the circadian clock to the brain, telling it that it's time to shut down and sleep.

After isolating the gene, Wu's team determined that when working properly, Wake helps shut down clock neurons of the brain that control arousal by making them more responsive to signals from the inhibitory neurotransmitter called GABA. Wake does this specifically in the early evening, thus promoting sleep at the right time. Levels of Wake cycle during the day, peaking near dusk in good sleepers.

Flies with a mutated Wake gene that couldn't get to sleep were not getting enough GABA signal to quiet their arousal circuits at night, keeping the flies agitated.

The researchers found the same gene in every animal they studied: humans, mice, rabbits, chickens, even worms.

Importantly, when Wu's team looked to see where Wake was located in the mouse brain, they found that it was expressed in the suprachiasmatic nucleus (SCN), the master clock in mammals. Wu says the fact that the Wake protein was expressed in high concentrations in the SCN of mice is significant.

"Sometimes we discover things in flies that have no direct relevance in higher order animals," Wu says. "In this case, because we found the protein in a location where it likely plays a role in circadian rhythms and sleep, we are encouraged that this protein may do the same thing in mice and people."

The hope is that someday, by manipulating Wake, possibly with a medication, shift workers, military personnel and sleep-onset insomniacs could better.

"This novel pathway may be a place where we can intervene," Wu says.

Explore further: Neurotransmitter serotonin shown to link sleep–wake cycles with the body's natural 24-hour cycle

Related Stories

New fruitfly sleep gene promotes the need to sleep

February 4, 2014

All creatures great and small, including fruitflies, need sleep. Researchers have surmised that sleep – in any species—is necessary for repairing proteins, consolidating memories, and removing wastes from cells. But, ...

Recommended for you

Umbilical cells help eye's neurons connect

November 24, 2015

Cells isolated from human umbilical cord tissue have been shown to produce molecules that help retinal neurons from the eyes of rats grow, connect and survive, according to Duke University researchers working with Janssen ...

Brain connections predict how well you can pay attention

November 24, 2015

During a 1959 television appearance, Jack Kerouac was asked how long it took him to write his novel On The Road. His response – three weeks – amazed the interviewer and ignited an enduring myth that the book was composed ...

No cable spaghetti in the brain

November 24, 2015

Our brain is a mysterious machine. Billions of nerve cells are connected such that they store information as efficiently as books are stored in a well-organized library. To this date, many details remain unclear, for instance ...

Neurons encoding hand shapes identified in human brain

November 23, 2015

Neural prosthetic devices, which include small electrode arrays implanted in the brain, can allow paralyzed patients to control the movement of a robotic limb, whether that limb is attached to the individual or not. In May ...

Wireless sensor enables study of traumatic brain injury

November 23, 2015

A new system that uses a wireless implant has been shown to record for the first time how brain tissue deforms when subjected to the kind of shock that causes blast-induced trauma commonly seen in combat veterans.


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.