Genetically engineered mice that more accurately reproduce the conditions of Alzheimer's disease

June 6, 2014
Figure 1: Amyloid beta peptide (brown) accumulation in the brain of the new double-mutant mouse model of Alzheimer’s disease. Credit: Takaomi Saido, RIKEN Brain Science Institute

Potential therapies for Alzheimer's disease are currently studied using genetically engineered mouse strains that display many of the key features of the disease. Most of these mouse models overexpress the amyloid precursor protein (APP)—a large protein that when cut by enzymes releases amyloid beta (Aβ), the peptide responsible for the formation of pathogenic plaques in the brains of Alzheimer's patients. The problem with this approach, however, is that APP can also give rise to other peptide fragments that are either toxic or neuroprotective, making it difficult to translate research findings to the human disease.

Takaomi Saido, Takashi Saito and colleagues from the Laboratory for Proteolytic Neuroscience at the RIKEN Brain Science Institute have now developed a pair of mouse models that overproduce Aβ without overexpressing APP. "Our mice could be useful tools to evaluate drug targets and to elucidate the pathogenic molecular mechanisms of Alzheimer's disease," says Saido.

To 'build' their first mouse model, Saido's team manipulated the mouse gene that encodes APP using a genetic engineering technique known as a 'knock-in' strategy. The researchers first made the Aβ-coding portion of the APP gene more human-like. They then 'knocked in' two specific mutations found in people with family histories of early-onset Alzheimer's disease. One of these, the so-called Swedish mutation, increases the total amount of Aβ; the other, the Iberian mutation, adjusts the ratio of Aβ forms, tipping the balance toward a type that is the most likely to cause plaque build-up. Neither mutation affects the overall expression of APP.

These mice began to accumulate Aβ beginning at around six months of age (Fig. 1). They subsequently developed several Alzheimer's-related symptoms, including amyloid plaques in the brain's cortex and hippocampus, with signs of neuroinflammation and synaptic loss in the vicinity of the plaques. The mice also showed signs of cognitive and memory impairment at 18 months of age.

In parallel, the researchers created another that expressed the Arctic mutation in addition to the Swedish and Iberian ones. The symptoms in these mice were generally more severe and rapid. "The triple-mutant strain would be a useful tool to elucidate pathogenic molecular mechanisms after Aβ deposition," notes Saido, "while the double-mutant strain could help search for ways to prevent the disease."

The new mouse models provide a means of studying the effects of Aβ in the brain without the complicating effects of overexpressed APP, and are expected to allow researchers to more accurately evaluate novel therapies for Alzheimer's.

Explore further: Characterizing a toxic offender

More information: Saito, T., Matsuba, Y., Mihira, N., Takano, J., Nilsson, P., Itohara, S., Iwata, N. & Saido, T. C. "Single App knock-in mouse models of Alzheimer's disease." Nature Neuroscience 17, 661–663 (2014). DOI: 10.1038/nn.3697

Related Stories

Characterizing a toxic offender

December 9, 2011

The brains of individuals with Alzheimer's disease contain protein aggregates called plaques and tangles, which interfere with normal communication between nerve cells and cause progressive learning and memory deficits. Now, ...

The benefits of a spotless mind

November 15, 2013

Alzheimer's disease is an age-related memory disorder characterized by the accumulation of clumps of the toxic amyloid-β (Aβ) protein fragment in the extracellular space around neurons in the brain. Drugs that help to 'clean ...

New therapeutic target discovered for Alzheimer's disease

March 18, 2014

A team of scientists from the University of California, San Diego School of Medicine, the Medical University of South Carolina and San Diego-based American Life Science Pharmaceuticals, Inc., report that cathepsin B gene ...

Recommended for you

Predicting change in the Alzheimer's brain

October 6, 2015

MIT researchers are developing a computer system that uses genetic, demographic, and clinical data to help predict the effects of disease on brain anatomy.

Old drug offers new hope to treat Alzheimer's disease

September 21, 2015

Scientists from the Gladstone Institutes have discovered that salsalate, a drug used to treat rheumatoid arthritis, effectively reversed tau-related dysfunction in an animal model of frontotemporal dementia (FTD). Salsalate ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.