Scientists Shed New Light On Right Brain Activity

December 16, 2009

It’s a world first: thanks to new technology developed by the University of Victoria, Canada, researchers can now show how multiple parts of the right brain dynamically process spatial relationships.

“We already know that most people’s right brains deal with the relationship between things in 3-D space,” says UVic researcher Phil Zeman. “But until now we didn’t know how multiple areas in the right interact with each other for spatial processing. This information is vital to understanding the key functions of the right brain, including why people with traumatic brain injury have difficulties with spatial navigation and how pharmaceuticals such as antidepressants affect the brain.”

Zeman, along with his supervisor Dr. Ron Skelton, and PhD student Sharon Lee, are using UVic-developed technology to show how people process information. The MOST-EEG (Multiple Origin Spatio-Temporal -EEG) uses the electrical activity obtained from a person’s scalp, recorded while a study participant plays a for example, to construct a meaningful representation of the that took place while the participant learned and used the layout of the virtual environment. In general, the tool provides a 3-D representation of the coordination of multiple regions of the brain during different mental states and can be applied in multiple applications and contexts.

The UVic researchers found that the brain activity of healthy adults shows strong and predominantly right hemisphere involvement during navigation tasks in the video game space. When subjects were instructed to find their way to a hidden target location in the 3-D game environment (a common video game task) they used their right hemisphere as they navigated. This right brain activity was greater during the navigation task compared to when people were simply told to go to a target that they could see from their starting position. The results strongly suggest the act of finding our way requires the right hemisphere of the brain. A 3-D model showing the active brain areas and connections is posted at www.spatialbrain.com.

The UVic team hopes to apply the MOST-EEG technique and navigation in virtual environments to develop a better understanding of neural and cognitive deficits after .

Related Stories

Recommended for you

Brain activity buffers against worsening anxiety

November 17, 2017
Boosting activity in brain areas related to thinking and problem-solving may also buffer against worsening anxiety, suggests a new study by Duke University researchers.

Investigating patterns of degeneration in Alzheimer's disease

November 17, 2017
Alzheimer's disease (AD) is known to cause memory loss and cognitive decline, but other functions of the brain can remain intact. The reasons cells in some brain regions degenerate while others are protected is largely unknown. ...

Neuroscience research provides evidence the brain is strobing, not constant

November 17, 2017
It's not just our eyes that play tricks on us, but our ears. That's the finding of a landmark Australian-Italian collaboration that provides new evidence that oscillations, or 'strobes', are a general feature of human perception.

Study may point to new treatment approach for ASD

November 17, 2017
Using sophisticated genome mining and gene manipulation techniques, researchers at Vanderbilt University Medical Center (VUMC) have solved a mystery that could lead to a new treatment approach for autism spectrum disorder ...

Neuroscientists find chronic stress skews decisions toward higher-risk options

November 16, 2017
Making decisions is not always easy, especially when choosing between two options that have both positive and negative elements, such as deciding between a job with a high salary but long hours, and a lower-paying job that ...

Paraplegic rats walk and regain feeling after stem cell treatment

November 16, 2017
Engineered tissue containing human stem cells has allowed paraplegic rats to walk independently and regain sensory perception. The implanted rats also show some degree of healing in their spinal cords. The research, published ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.