Scientists map genetic evolution of leukemia

March 14, 2012
By mapping the evolution of cancer cells in patients with myelodysplastic syndromes who later died of leukemia, Washington University scientists Timothy Graubert, M.D., (left) and Matthew Walter, M.D., have found clues to suggest that targeted cancer drugs should be aimed at mutations that develop early in the disease. Credit: Michael Purdy, Washington University

The diagnosis of myelodysplastic syndrome, a blood cancer, often causes confusion. While some patients can be treated with repeated blood transfusions, others require chemotherapy, leaving some uncertainty about whether the syndromes actually are cancer.

Now, using the latest DNA sequencing technology, scientists at the Washington University School of Medicine in St. Louis have shown that the is an early form of cancer with characteristics that are very similar to the fatal to which it often progresses. And by mapping the of cancer cells in seven patients with myelodysplastic syndromes who later died of leukemia, they have found clues to suggest that targeted cancer drugs should be aimed at mutations that develop early in the disease.

The research, by a large team of Washington University researchers at the Siteman Cancer Center, appears online March 14 in the .

The scientists sequenced all the DNA – the genome – of tumor cells from the patients over time. While some cancer cells in each patient acquired new mutations as they evolved, they always retained the original cluster of mutations that made the cells cancerous in the first place.

This discovery, which must be confirmed in larger studies, suggests that drugs targeted to cancer mutations might be more effective if they are directed toward genetic changes in the original cluster of cancer cells called the founding clone. Drugs that target mutations found exclusively in later-evolving cancer cells may kill those cells but likely wouldn't damage founding clones that do not carry the later mutations.

"It's probably not enough to know that a particular mutation exists in cancer cells," says senior author Timothy Graubert, MD, associate professor of medicine at the School of Medicine who also treats patients at Barnes-Jewish Hospital. "We likely will need to dig deeper to find out whether a mutation is in the founding clone that initiated the cancer or in a later-evolving clone."

In other words, think of this cancer as a tree, Graubert says.

"To kill a tree, you have to pull out the roots," he says. "If you only cut off a limb, it will just grow back. We're saying that to be effective, targeted probably need to attack mutations at the root of this disease."

About 28,000 Americans are diagnosed with myelodysplastic syndromes each year, most over age 60. They occur when blood cells produced in the bone marrow don't fully develop and immature cells crowd out healthy ones. In about one-third of patients, the disease progresses to a fatal form of leukemia.

As part of the new research, Graubert and his colleagues teamed with researchers at Washington University's Genome Institute who sequenced the genomes of cancer cells after the patients developed acute myeloid leukemia. Then, they determined whether the mutations they found were present when the same patients were first diagnosed with myelodysplastic syndromes.

They identified every mutation, typically hundreds, that developed in each patient's bone as the cancer evolved. They also showed that about 85 percent of the patients' bone marrow cells were cancerous, regardless of whether they had myelodysplastic syndromes or leukemia.

Even in the earliest stages of myelodysplastic syndromes, when typically only a small number of immature blood cells populate the bone marrow, roughly 85 percent of bone marrow cells were part of the malignant clone.

"These results clearly establish that myelodysplastic syndromes are truly an early form of cancer," says first author Matthew Walter, MD, assistant professor of medicine, who also treats patients at Barnes-Jewish Hospital. "But until now, there were a lot of people – patients and physicians included – who questioned this."

That such a high percentage of bone marrow cells are malignant so early in the course of myelodysplastic syndromes that progress to leukemia may help improve the diagnosis of the disease and aid in determining prognosis, Walter says.

In the current study, funded in part by a federal stimulus grant from the National Institutes of Health (NIH), the researchers also identified 11 mutations in the patients' cancer cells that were later found to occur in other patients with acute myeloid leukemia, an indicator of the mutations' significance. Four of these had never before been linked to myelodysplastic syndromes or leukemia.

To track the evolution of cancer cells, the researchers captured segments of DNA involved in every mutation and repeatedly sequence those regions more than 600 times each. Using this deep sequencing approach, developed at The Genome Institute, they could identify not only the founding clone in each patients' cells, but also "breakaway" secondary clones that contributed to both the progression of myelodysplastic syndromes and acute leukemia. In all cases, the secondary clones could be traced back to the founding clone.

"This tells us that the secondary clones were not distinct cancers, but that they all evolved from the founding clone," Walter says.

The researchers say that sequencing the entire genomes of the was essential to piecing together a picture of the way cancer evolved. While this technology is not yet routinely available to cancer , Graubert and Walter say reduced sequencing costs and improved analytical approaches should make it easier for more scientists to get a sense of the clonal nature of a patient's tumor cells.

Explore further: Key genetic error found in family of blood cancers

More information: Walter MJ, Shen DS, Ding LD, Mardis ER, Ley TJ, Wilson RK, Graubert TA et al. Clonal Architecture of Secondary Acute Myeloid Leukemia. New England Journal of Medicine. Online March 14, 2012.

Related Stories

Key genetic error found in family of blood cancers

December 14, 2011
(Medical Xpress) -- Scientists have uncovered a critical genetic mutation in some patients with myelodysplastic syndromes – a group of blood cancers that can progress to a fatal form of leukemia.

Chemotherapy may influence leukemia relapse: research

January 11, 2012
The chemotherapy drugs required to push a common form of adult leukemia into remission may contribute to DNA damage that can lead to a relapse of the disease in some patients, findings of a new study suggest.

Discovery of genetic mutations better diagnose myelodysplastic syndromes

June 30, 2011
For patients with myelodysplastic syndromes (MDS), choosing the appropriate treatment depends heavily on the prognosis. Those patients at the highest risk of dying from their disease are typically offered the most aggressive ...

Researchers discover gene defect that predisposes people to leukemia

September 4, 2011
A new genetic defect that predisposes people to acute myeloid leukemia and myelodysplasia has been discovered. The mutations were found in the GATA2 gene. Among its several regulatory roles, the gene acts as a master control ...

Recommended for you

Shooting the achilles heel of nervous system cancers

July 20, 2017
Virtually all cancer treatments used today also damage normal cells, causing the toxic side effects associated with cancer treatment. A cooperative research team led by researchers at Dartmouth's Norris Cotton Cancer Center ...

Molecular changes with age in normal breast tissue are linked to cancer-related changes

July 20, 2017
Several known factors are associated with a higher risk of breast cancer including increasing age, being overweight after menopause, alcohol intake, and family history. However, the underlying biologic mechanisms through ...

Immune-cell numbers predict response to combination immunotherapy in melanoma

July 20, 2017
Whether a melanoma patient will better respond to a single immunotherapy drug or two in combination depends on the abundance of certain white blood cells within their tumors, according to a new study conducted by UC San Francisco ...

Discovery could lead to better results for patients undergoing radiation

July 19, 2017
More than half of cancer patients undergo radiotherapy, in which high doses of radiation are aimed at diseased tissue to kill cancer cells. But due to a phenomenon known as radiation-induced bystander effect (RIBE), in which ...

Definitive genomic study reveals alterations driving most medulloblastoma brain tumors

July 19, 2017
The most comprehensive analysis yet of medulloblastoma has identified genomic changes responsible for more than 75 percent of the brain tumors, including two new suspected cancer genes that were found exclusively in the least ...

Novel CRISPR-Cas9 screening enables discovery of new targets to aid cancer immunotherapy

July 19, 2017
A novel screening method developed by a team at Dana-Farber/Boston Children's Cancer and Blood Disorders Center—using CRISPR-Cas9 genome editing technology to test the function of thousands of tumor genes in mice—has ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.