A striking link is found between the Fragile-X gene and mutations that cause autism

April 25, 2012

A team led by scientists at Cold Spring Harbor Laboratory (CSHL) publishes research today indicating a striking association between genes found disrupted in children with autism and genes that are targets of FMRP, the protein generated by the gene FMR1, whose dysfunction causes Fragile-X syndrome. The new study appears online April 25 in the journal Neuron.

Fragile-X syndrome is the most common cause of inherited . It is also counted among the (ASDs) owing to the co-occurrence of autism-like symptoms in patients. A usually devastating disorder, Fragile X occurs when the FRM1 gene fails to direct to manufacture FMRP, the FMR1-encoded protein, which plays a vital role in neural development and synaptic plasticity.

"A surprising proportion -- up to 20% -- of the we see in our sample drawn from 343 autism families appear to be regulated by FMRP," says CSHL Research Investigator Dr. Michael Ronemus, co-first author of the new study. "Because of research connecting FMRP to the phenomenon of neuroplasticity, our work indicates a possible convergence of mechanisms causing autism," adds CSHL Professor Michael Wigler, the senior author of the study. Neuroplasticity is the process by which our brains become sensitized and desensitized to repetitive inputs.

Besides team leader Wigler, a geneticist, others who worked on the study included CSHL sequencing authority Dr. W. Richard McCombie, a sequencing team at Washington University, St. Louis, and Drs. Michael Schatz, Ivan Iossifov and Dan Levy of CSHL, all .

Families studied by the team were part of the Simons Simplex Collection. This collection is comprised of "simplex" autism families: those with at least two children, only one of whom has autism spectrum disorder or ASD. In such cases, disease causation has been previously linked to de novo, or spontaneously occurring, gene .

The new research reached its conclusions based on full exome sequencing of each family member's genome. The exome is the portion of the genome – less than 2% of the total -- in which DNA encodes proteins. By studying simplex families, researchers seek to discover, among other things, the fraction of autism caused by gene mutations that are not inherited.

This study focused on small-scale de novo mutations – changes in DNA as small as a single DNA "letter" relative to the normal sequence, and small insertions or deletions as large as 10 or 15 letters. In the majority of children with small de novo mutations those mutations traced to the father's germ cells (sperm), in an age-dependent manner. Thus, the children of older parents were more likely to have the sorts of mutations that can cause autism.

There are many types of gene mutations, some more likely to result in biological dysfunction than others. One of the most important findings of this study concerned the type of small-scale de novo mutations most likely to play a causative role in autism. "We found that those small-scale de novo changes that disrupt – in other words, those that disrupt the production of a normal length protein -- are twice as frequent in affected vs. unaffected children," says CSHL Assistant Professor Ivan Iossifov, a quantitative biologist who is the study's other co-first author. (In technical terms, these "disrupting" mutations include frame-shift, splice-site, and nonsense mutations, but not missense mutations.)

The estimated incidence of ASD is about 1 in 100 live births. De novo mutations are fairly common, 100 occurring on average in every child born. But only one such mutation per child typically occurs in a chromosomal region encoding a gene, and the odds that the mutation actually disrupts a gene is lower still. Finally, the odds that the gene disrupted is a gene important in the development of the brain lowers the risk of an autism-causing mutation further.

Wigler's team estimates there are 350 to 400 such vulnerable genes out of the full human complement of about 20,000 genes. "It is this 2:1 differential between the incidence of gene-disrupting mutations seen in affected vs. unaffected siblings, and the number of recurrent and total targets of gene disruption found in our study and recent similar studies, that is the basis of our estimate a total of between 350 and 400 autism susceptibility genes," Iossifov adds. Only about 10% of autism can be explained by mutations of the type the authors detected, which the authors reason is a large underestimate.

While the CSHL study identified about 60 previously unidentified autism candidate genes, and confirmed the role of a number of others previously identified, it was the linkage with the product of the Fragile-X gene that is perhaps its most intriguing result. A collaboration with Drs. Robert and Jennifer Darnell of Rockefeller University was critical in this regard. The Darnells had published extensively on FMRP, positing its biological mechanism of action in relation to .

To clarify, the association discussed in the new paper is not with the FMR1 gene itself, but rather genes that are "downstream" of it. These are genes whose products FMR1 regulates – and regulates via its encoding of the protein FMRP. Once generated, FMRP binds to certain RNA messages (mRNAs) produced by other genes. When FMRP binds to these mRNAs, it prevents them from properly engaging the ribosome to generate proteins.

Explore further: Mutations in 3 genes linked to autism spectrum disorders

More information: Iossifov et al.: "De Novo Gene Disruptions in Children on the Autistic Spectrum" appears online ahead of print in Neuron on April 25, 2012.

Related Stories

Mutations in 3 genes linked to autism spectrum disorders

April 4, 2012
Mutations in three new genes have been linked to autism, according to new studies including one with investigators at Mount Sinai School of Medicine. All three studies include lead investigators of the Autism Sequencing Consortium ...

Autism study validates importance of spontaneous causal mutations and sheds new light on gender skew

June 8, 2011
A clinically extensive and mathematically powerful study of 1000 families with one autistic child and one unaffected sibling has validated a controversial theory of autism's complex genetic causation. The study for the first ...

Workings of brain protein suggest therapies for inherited intellectual disability, autism

July 21, 2011
Researchers now have a much clearer understanding of how mutations in a single gene can produce the complex cognitive deficits characteristic of Fragile X Syndrome, the most common inherited form of intellectual disability. ...

Recommended for you

Genome editing enhances T-cells for cancer immunotherapy

November 20, 2017
Researchers at Cardiff University have found a way to boost the cancer-destroying ability of the immune system's T-cells, offering new hope in the fight against a wide range of cancers.

A math concept from the engineering world points to a way of making massive transcriptome studies more efficient

November 17, 2017
To most people, data compression refers to shrinking existing data—say from a song or picture's raw digital recording—by removing some data, but not so much as to render it unrecognizable (think MP3 or JPEG files). Now, ...

US scientists try first gene editing in the body

November 15, 2017
Scientists for the first time have tried editing a gene inside the body in a bold attempt to permanently change a person's DNA to try to cure a disease.

Genetic mutation in extended Amish family in Indiana protects against aging and increases longevity (Update)

November 15, 2017
The first genetic mutation that appears to protect against multiple aspects of biological aging in humans has been discovered in an extended family of Old Order Amish living in the vicinity of Berne, Indiana, report Northwestern ...

Genetic variant prompts cells to store fat, fueling obesity

November 13, 2017
Obesity is often attributed to a simple equation: People are eating too much and exercising too little. But evidence is growing that at least some of the weight gain that plagues modern humans is predetermined. New research ...

Discovering a protein's role in gene expression

November 10, 2017
Northwestern Medicine scientists have discovered that a protein called BRWD2/PHIP binds to histone lysine 4 (H3K4) methylation—a key molecular event that influences gene expression—and demonstrated that it does so via ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.