Delivery system for gene therapy may help treat arthritis

May 15, 2012, Georgia Health Sciences University
Drs. Andrew L. Mellor and Lei Huang at Georgia Health Sciences University have shown a system called DNA nanoparticles, used to deliver genes or drugs directly into cells to treat a variety of diseases, may help arthritis without delivering anything. Credit: Phil Jones, GHSU Photographer

A DNA-covered submicroscopic bead used to deliver genes or drugs directly into cells to treat disease appears to have therapeutic value just by showing up, researchers report.

Within a few hours of injecting empty-handed DNA nanoparticles, Georgia Health Sciences University researchers were surprised to see increased expression of an enzyme that calms the immune response.

In an of , the enhanced expression of indoleomine 2,3 dioxygenase, or IDO, significantly reduced the hallmark limb joint swelling and inflammation of this debilitating autoimmune disease, researchers report in the study featured on the cover of The .

"It's like pouring water on a fire," said Dr. Andrew L. Mellor, Director of the GHSU's Medical College of Georgia Center and the study's corresponding author. "The fire is burning down the house, which in this case is the tissue normally required for your joints to work smoothly," Mellor said of the immune system's inexplicable attack on bone-cushioning cartilage. "When IDO levels are high, there is more water to control the fire."

Several delivery systems are used for gene therapy, which is used to treat conditions including cancer, and Parkinson's disease. The new findings suggest the DNA nanoparticle technique has value as well for such as arthritis, and lupus. "We want to induce IDO because it protects healthy tissue from destruction by the immune system," Mellor said.

The researchers were exploring IDO's autoimmune treatment potential by inserting the human IDO gene into DNA nanoparticles. They hoped to enhance IDO expression in their arthritis model when Dr. Lei Huang, Assistant Research Scientist and the paper's first author, serendipitously found that the DNA nanoparticle itself produced the desired result. Exactly how and why is still being pursued. Early evidence suggests that called phagocytes, white blood that gobble up undesirables like bacteria and dying cells, start making more IDO in response to the DNA nanoparticle's arrival. " eat it and respond quickly to it and the effect we measure is IDO," Mellor said.

Dr. Tracy L. McGaha, GHSU immunologist and a co-author on the current study, recently discovered that similar cells also prevented development of systemic lupus erythematosus in mice.

Follow-up studies include documenting all cells that respond by producing more IDO. GHSU researchers already are working with biopolymer experts at the Massachusetts Institute of Technology, the University of California, Berkeley and the Georgia Institute of Technology to identify the optimal polymer.

The polymer used in the study is not biodegradable so the researchers need one that will eventually safely degrade in the body. Ideally, they'd also like it to target specific cells, such as those near inflamed joints, to minimize any potential ill effects.

"It's like a bead and you wrap the DNA around it," Mellor said of the polymer. While the DNA does not have to carry anything to get the desired response in this case, DNA itself is essential to make cells express IDO. To ensure that IDO expression was responsible for the improvements, they also performed experiments in mice given an IDO inhibitor in their drinking water and in mice genetically altered to not express IDO. "Without access to the IDO pathway, the therapy no longer works," Mellor said.

Drs. Andrew Mellor and David Munn reported in 1998 in the journal Science that the fetus expresses IDO to help avoid rejection by the mother's immune system. Subsequent studies have shown tumors also use IDO for protection and clinical trials are studying the tumor-fighting potential of an IDO inhibitor. On the flip side, there is evidence that increasing IDO expression can protect transplanted organs and counter autoimmune disease.

Explore further: Newest cancer therapies multi-task to eliminate tumors

Related Stories

Newest cancer therapies multi-task to eliminate tumors

September 16, 2011
Some of the newest therapies in the war on cancer remove the brakes cancer puts on the immune system, Georgia Health Sciences University researchers report.

Natural method for clearing cellular debris provides new targets for lupus treatment

February 24, 2012
Cells that die naturally generate a lot of internal debris that can trigger the immune system to attack the body, leading to diseases such as lupus.

Recommended for you

Immunosuppressive cells in newborns play important role in controlling inflammation in early life

January 15, 2018
New research led by The Wistar Institute, in collaboration with Sun Yat-sen University in China, has characterized the transitory presence of myeloid-derived suppressor cells (MDSCs) in mouse and human newborns, revealing ...

Memory loss from West Nile virus may be preventable

January 15, 2018
More than 10,000 people in the United States are living with memory loss and other persistent neurological problems that occur after West Nile virus infects the brain.

Mould discovery in lungs paves way for helping hard to treat asthma

January 15, 2018
A team at The University of Manchester have found that in a minority of patients they studied, a standard treatment for asthma—oral steroids—was associated with increased levels of the treatable mould Aspergillus in the ...

Fast food makes the immune system more aggressive in the long term

January 12, 2018
The immune system reacts similarly to a high fat and high calorie diet as to a bacterial infection. This is shown by a recent study led by the University of Bonn. Particularly disturbing: Unhealthy food seems to make the ...

Past exposures shape immune response in pediatric acute respiratory infections

January 12, 2018
Acute respiratory tract infections (ARTI) are the leading global cause of death in early childhood, according to the Centers for Disease Control and Prevention (CDC). Lower respiratory tract infections, including bronchiolitis ...

Scientists identify immune cells that keep gut fungi under control

January 11, 2018
Immune cells that process food and bacterial antigens in the intestines control the intestinal population of fungi, according to a new study from Weill Cornell Medicine scientists. Defects in the fungus-fighting abilities ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.