Gut microbes battle a common set of viruses shared by global populations

June 25, 2012

The human gut is home to a teeming ecosystem of microbes that is intimately involved in both human health and disease. But while the gut microbiota is interacting with our body, they are also under constant attack from viruses. In a study published online inGenome Research, researchers have analyzed a bacterial immune system, revealing a common set of viruses associated with gut microbiota in global populations.

Viruses that prey on bacteria, called phages, pose a constant threat to the health of . In many ecological systems, viruses outnumber ten to one. Given the richness of bacteria in the , it was not surprising that scientists have found that phages are also highly prevalent. But how can viruses targeting microbiota be identified? How do viral communities differ between people and global populations, and what could this tell us about human health and disease?

In this report, a team of scientists from Israel has taken advantage of information coded in a bacterial immune system to shed new light on these questions. Bacteria can "steal" small pieces of DNA from phages that attack them, and use these stolen pieces to recognize and respond to the attacker, in a manner similar to usage of by the . The stolen DNA pieces are stored in specific places in the called CRISPR loci (clustered regularly interspaced short palindromic repeats).

"In our study we searched for such stolen phage DNA pieces carried by bacteria living in the human gut," said Rotem Sorek of the Weizmann Institute of Science and senior author of the study. "We then used these pieces to identify DNA of phages that co-exist with the bacteria in the gut."

Sorek's team used this strategy to identify and analyze phages present in the gut microbiota of a cohort of European individuals. They found that nearly 80% of the phages are shared between two or more individuals. The team compared their data to samples previously derived from American and Japanese individuals, finding phages from their European data set also present in these geographically distant populations, a surprising result given the diversity of phages seen in other ecological niches.

Sorek explained that their findings mean that there are hundreds of types of viruses that repeatedly infect our gut . "These viruses can kill some of our gut bacteria," said Sorek. "It is therefore likely that these viruses can influence human health."

The authors note that as evidence for the beneficial roles played by bacteria in the healthy human gut continues to mount, it is critical that we understand the pressures placed upon the "good" bacteria that are vital to human health. "Our discovery of a large set of phages attacking these good bacteria in our gut opens a window for understanding how they affect human health," Sorek added. Researchers can now begin to ask how phage dynamics in the gut changes over time, and what it might tell us about diseases, such as inflammatory bowel disease, and how to more effectively treat them.

Scientists from the Weizmann Institute of Science (Rehovot, Israel) and Tel Aviv University (Tel Aviv, Israel) contributed to this study.

Explore further: Viruses in the human gut show dynamic response to diet

More information: Genome Res doi: 10.1101/gr.138297.112

Related Stories

Viruses in the human gut show dynamic response to diet

August 30, 2011
The digestive system is home to a myriad of viruses, but how they are involved in health and disease is poorly understood. In a study published online today in Genome Research, researchers have investigated the dynamics of ...

Recommended for you

New approach to studying chromosomes' centers may reveal link to Down syndrome and more

November 20, 2017
Some scientists call it the "final frontier" of our DNA—even though it lies at the center of every X-shaped chromosome in nearly every one of our cells.

Genome editing enhances T-cells for cancer immunotherapy

November 20, 2017
Researchers at Cardiff University have found a way to boost the cancer-destroying ability of the immune system's T-cells, offering new hope in the fight against a wide range of cancers.

A math concept from the engineering world points to a way of making massive transcriptome studies more efficient

November 17, 2017
To most people, data compression refers to shrinking existing data—say from a song or picture's raw digital recording—by removing some data, but not so much as to render it unrecognizable (think MP3 or JPEG files). Now, ...

US scientists try first gene editing in the body

November 15, 2017
Scientists for the first time have tried editing a gene inside the body in a bold attempt to permanently change a person's DNA to try to cure a disease.

Genetic mutation in extended Amish family in Indiana protects against aging and increases longevity (Update)

November 15, 2017
The first genetic mutation that appears to protect against multiple aspects of biological aging in humans has been discovered in an extended family of Old Order Amish living in the vicinity of Berne, Indiana, report Northwestern ...

Genetic variant prompts cells to store fat, fueling obesity

November 13, 2017
Obesity is often attributed to a simple equation: People are eating too much and exercising too little. But evidence is growing that at least some of the weight gain that plagues modern humans is predetermined. New research ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.