Study shows steps to isolate stem cells from brain tumors

September 25, 2012
Here is a representative neurosphere cultured from brain tumor initiating cells. Credit: Journal of Visualized Experiments

A new video protocol in Journal of Visualized Experiments (JoVE) details an assay to identify brain tumor initiating stem cells from primary brain tumors. Through flow cytometry, scientists separate stem cells from the rest of the tumor, allowing quick and efficient analysis of target cells. This approach has been effectively used to identify similar stem cells in leukemia patients.

"Overall, these tumors are extremely rare, with only around one in 100,000 people being diagnosed with a primary ," Dr. Sheila Singh, co-author and neurosurgeon from McMaster University, explains. "However, these tumors are the second most common malignancy in the pediatric population, and are behind only leukemia as the cancer with the highest mortality rate."

This publication is significant because it allows scientists to identify, purify, and study brain initiating cells rapidly and without sample loss. Because these stem cells allow scientists to grow films in a , they serve as an effective model of a tumor expanding in the brain of a patient. Though not all tumors are actively driven by a stem cell, they do drive the most aggressively expanding tumors that lead to a negative prognosis. Typically, the median survival for patients with these types of tumors is fifteen-months, and they are almost uniformly fatal. Currently there is no prospect for a cure.

"Since 2003, we've been perfecting the technique to isolate stem cells from ," Dr. Singh explains. Stem cells have three key properties: self-renewal, multilineage differentiation, and longevity. Studying stem cells allow scientists to develop therapies that not only target the , but also many of the daughter cells. This is crucial because are often hard to eradicate without adverse effects to the rest of the body. Once are identified, this procedure can be used to target and isolate these cells as well. Singh continues, "By describing the entire hierarchy of tumor progenitor cells, we can describe, characterize and target any point in the lineage. These techniques are going to help us characterize and isolate these cells to learn more about their molecular underpinnings and how to target them."

Given the small amount of tissue available to scientists like Dr. Singh, analytic procedures must be incredibly efficient and precise so as not to waste the precious material. Since Dr. Singh first identified brain tumor initiating cells, she has "recognized the difficulties in working with these tissues." Singh's lab "has focused on optimizing these procedures, which are limited by small cell numbers, to increase the data output." As such, JoVE's unique video-text hybrid serves as an effective means to transmit the procedures to Dr. Singh's colleagues and other cancer researchers. JoVE is the world's first peer-reviewed science video journal indexed in PubMed and MEDLINE.

Explore further: Study suggests new treatment target for glioblastoma multiforme

More information: Singh et. al. www.jove.com/video/4111

Related Stories

Study suggests new treatment target for glioblastoma multiforme

August 1, 2012
A study by UT Southwestern Medical Center researchers published online today in Nature reveals new insight into why the most common, deadly kind of brain tumor in adults recurs and identifies a potential target for future ...

New 3-D stem cell culture method published

March 2, 2012
Stem cells are the body's mechanics, repairing damaged tissues and organs. Because these cells are able to grow into any type of cell in the body, scientists believe they hold the key to groundbreaking new therapies. To help ...

Cancer stem cell vaccine in development shows antitumor effect

April 2, 2012
Scientists may have discovered a new paradigm for immunotherapy against cancer by priming antibodies and T cells with cancer stem cells, according to a study published in Cancer Research, a journal of the American Association ...

Recommended for you

Molecular hitchhiker on human protein signals tumors to self-destruct

July 24, 2017
Powerful molecules can hitch rides on a plentiful human protein and signal tumors to self-destruct, a team of Vanderbilt University engineers found.

Researchers develop new method to generate human antibodies

July 24, 2017
An international team of scientists has developed a method to rapidly produce specific human antibodies in the laboratory. The technique, which will be described in a paper to be published July 24 in The Journal of Experimental ...

New vaccine production could improve flu shot accuracy

July 24, 2017
A new way of producing the seasonal flu vaccine could speed up the process and provide better protection against infection.

A sodium surprise: Engineers find unexpected result during cardiac research

July 20, 2017
Irregular heartbeat—or arrhythmia—can have sudden and often fatal consequences. A biomedical engineering team at Washington University in St. Louis examining molecular behavior in cardiac tissue recently made a surprising ...

Want to win at sports? Take a cue from these mighty mice

July 20, 2017
As student athletes hit training fields this summer to gain the competitive edge, a new study shows how the experiences of a tiny mouse can put them on the path to winning.

'Smart' robot technology could give stroke rehab a boost

July 19, 2017
Scientists say they have developed a "smart" robotic harness that might make it easier for people to learn to walk again after a stroke or spinal cord injury.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.