Major genetic discovery explains 10 percent of aortic valve disease

September 28, 2012

Researchers at the Sainte-Justine University Hospital Center and University of Montreal have identified genetic origins in 10% of an important form of congenital heart diseases by studying the genetic variability within families.

"This is more than the sum of the genes found to date in all previous studies, which explained only 1% of the disease, says Dr. Marc-Phillip Hitz, lead author of the study published in , under the direction of Dr. Gregor Andelfinger, pediatric cardiologist and principal investigator leading an international research team, who calls this study "a very important step towards a molecular catalog, which ultimately may explain the evolution of disease in individual patients and allow to influence the progression of the disease."

Congenital heart malformations are at the forefront of all malformations in newborns, and one of the most important causes of infant mortality in . For their study, the researchers focused on malformations of the , where familial clustering of cases often suggests a hereditary component. The researchers therefore decided to adopt a "family approach" and selected families with several members having a heart condition, in order to be able to establish a direct link with the disease. Using very strict filtering criteria to identify possible causal –a structural form of variation of the that leads to an increase or decrease in the copy number of small parts of DNA within the genome– the researchers retained only rare variants directly involved in the disease processes and causing severe . The variants had to be carried by the patients but not by healthy members of their family. Researchers then validated the identified genes by confirming that they were highly expressed in the developing mouse heart.

The study also noted that many affected patients carried more than one rare variant. This finding had already been made in the context of other congenital diseases. In addition, the study reveals that in the 59 families analyzed, no copy number variants recurred between two families. "Despite the homogeneity of the French-Canadian population as compared to other populations and similarities seen within families, we realize that copy number variants are very different between families with no genealogical connection. From a genetic point of view, the diseases we looked at are a "family affair."

Moreover, although the study focused on the aortic valve area, genes explaining associated conditions have been identified. "It is striking that the majority of the identified genes also play an important role in blood vessels, not just in the valves of the heart," says Dr. Andelfinger. Indeed, the images are of striking clarity: expression patterns of the genes identified selectively stain areas of the heart where lesions are observed. "Numerous patients continue to have problems after successful initial intervention on the aortic valve, such as aortic dilation. Our study sheds new light on the link between the two issues, something we always observed clinically but had a hard time to explain," he concludes.

Explore further: Study identifies second gene associated with specific congenital heart defects

Related Stories

Study identifies second gene associated with specific congenital heart defects

April 29, 2011
A gene known to be important in cardiac development has been newly associated with congenital heart malformations that result in obstruction of the left ventricular outflow tract. These are the findings from a study conducted ...

Researchers link chromosome region to thoracic aortic disease

June 16, 2011
Patients with thoracic aortic aneurysms that lead to acute aortic dissections are 12 times more likely to have duplications in the DNA in a region of chromosome 16 (16p13.1) than those without the disease, according to a ...

New mouse model helps explain gene discovery in congenital heart disease

June 26, 2012
Scientists now have clues to how a gene mutation discovered in families affected with congenital heart disease leads to underdevelopment of the walls that separate the heart into four chambers. A Nationwide Children's Hospital ...

Recommended for you

Scientists identify new way cells turn off genes

July 19, 2017
Cells have more than one trick up their sleeve for controlling certain genes that regulate fetal growth and development.

South Asian genomes could be boon for disease research, scientists say

July 18, 2017
The Indian subcontinent's massive population is nearing 1.5 billion according to recent accounts. But that population is far from monolithic; it's made up of nearly 5,000 well-defined sub-groups, making the region one of ...

Mutant yeast reveals details of the aberrant genomic machinery of children's high-grade gliomas

July 18, 2017
St. Jude Children's Research Hospital biologists have used engineered yeast cells to discover how a mutation that is frequently found in pediatric brain tumor high-grade glioma triggers a cascade of genomic malfunctions.

Late-breaking mutations may play an important role in autism

July 17, 2017
A study of nearly 6,000 families, combining three genetic sequencing technologies, finds that mutations that occur after conception play an important role in autism. A team led by investigators at Boston Children's Hospital ...

Newly discovered gene variants link innate immunity and Alzheimer's disease

July 17, 2017
Three new gene variants, found in a genome wide association study of Alzheimer's disease (AD), point to the brain's immune cells in the onset of the disorder. These genes encode three proteins that are found in microglia, ...

Newly identified genetic marker may help detect high-risk flu patients

July 17, 2017
Researchers have discovered an inherited genetic variation that may help identify patients at elevated risk for severe, potentially fatal influenza infections. The scientists have also linked the gene variant to a mechanism ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.